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Project Goals >
N)

,1, Investigate fundamental properties of
parallel programs and the implications for
multiprocessor architectures and parallel
programming and compilers'

2A Explore architectural approaches that can
be used to build scalable multiprocessors
capable of supporting a shared memory
programming paradigm,

3. Develop compiler and programming
language technology that supports the
construction of efficient, machine-
independent parallel programs:

"4. Investigate architectural approaches that
will lead to substantial improvements in
uniprocessor performance and that can be
incorporated in scalable multiprocessorsj'-,

5. Develop CAD tools and _VI\SI technology
needed to construct high performance
machine',

"V I'A'



2. Executive Summary
DASH Hardware: The 16 processor prototype of DASH is now very close to completion.
All the hardware is either in fabrication or being debugging. We are shooting for an
operational prototype this Fall.

DASH Operating System: The operating system modifications have been keeping pace
with the hardware. All essential modifications necessary to bring up the operating system
on the DASH prototype have been completed. We have already successfully booted the
modified OS on a single cluster while using the new locks and interrupts provided by the
directory-controller board.

Parallel Simulation and Tracing Facility: We have continued the development and use
of our software tracing and simulation system, Tango. We have extended Tango to allow
multiple applications to be run at the same time with a user supplied scheduling strategy.
We have studied the performance gains of weak memory consistency models over
sequential consistency for scalable multiprocessors. Another study has evaluated the
benefits of software-controlled prefetching in multiprocessors. For the scientific
applications we studied, we found that prefetching was easy to add and it increased the
ierformance by 200-300%.

Compiler Managed Parallelism: We have developed new algorithms for two basic
parallelizing compiler modules: the data dependence analyzer and the loop transforme7.
While current methods sacrifice potential parallelism to improve compiler efficiency, we
demonstrate that it is possible to test data dependence exactly and efficiently.

Data Management: We have discovered that the behavior of caches on blocked
numerical code is quite unusual and must be accounted for in the design of such
algorithms. Especially for direct-mapped caches, the conventional wisdom of trying to
use the entire cache, or even a fixed fraction of the cache, is incorrect. The cache
performance can be significantly improved by choosing the block size according to the
matrix size or by copying data to contiguous memory locations.

Sparse Matrix Factorization: We have been exploring new ways to efficiently solve
large sparse systems of equations. Using the concept of supernodes, we have developed
techniques that make very effective use of caches. On an 8-processor Silicon Graphics
system, SGI 4D-380, we obtain over 40 MFLOPS of sustained performance.

Parallel Languages: To compensate for the weakness of parallelizing compilers in
extracting coarse-grain parallelism, we have developed a parallel programming language
called Jade. Starting with a sequential program, a programmer simply augments those
sections of code to be parallelized with side effect information. The Jade system finds
not just static parallelism but also parallelism that can only be derived at run time. Using
Jade can significantly reduce the time and effort required to develop a parallel version of
an imperative application with serial semantics. We have implemented a prototype Jade
system and also several applications using this language.

Protocol Verification: We are applying protocol verification techniques to the cache
coherence protocol for DASH. Although this project is in the initial stages, we have
completed a reduced description of the protocol which has been sufficient to find some
cases that were not covered in the documentation of the protocol. We are continuing to

hance the DASH description and specification, with the goal of either proving it correct
accelerating the debugging of the DASH prototype.
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VLSI CAD Tools: We have also continued our work in tool support for VLSI design.
Our recent work has been in three areas: incremental simulation, power supply noise
analysis, and BiCMOS simulation. In the area of incremental simulation, we have
completed and begun distributing IRSIM, an incremental switch-level simulator. This
tool is a variant of RSIM, that allows the user to change the netlist after a simulation has
been performed and quickly find the effects of the change. 'We are continuing work on
Bisim which started out as an attempt to create an RSIM-like tool for BiCMOS circuits.

We are finishing up our work on Ariel, an analysis tool that allows the designer to
calculate the noise on the power supply lines in the integrated circuit. This program first
extracts the resistance of the supply lines, then estimates the supply current and then uses
this information to find the voltage drops.

Self-Timed Circuits: We worked on a number of VLSI chips this period. In the self-
timed area, we designed, fabbed and tested a new self-timed divider, that is able to find a
new quotient bit every 3ns. The key point of this design is that the self-timed control
does not add any delay to the circuit, the delay is completely set by the datapath. We call
this new style Zero-Overhead Self-Timed Design.

High-Speed Memory: We have also been working on improving our designs of high-
speed BiCMOS memories. Previously we demonstrated a 64K 4ns SRAM. D'uring this
period, we have looked at ways to make the design more robust, to see if a commercial
memory would be possible. The results look very promising, and we are now looking at
other ways on improving both the speed and noise-margins in the design.
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3. Technical Progress

3.1 Parallel Processor Architecture
Our primary focus over the last 6 months has been the construction of the DASH
prototype. The prototype is now close to completion and we hope to have working
hardware and software within the next few weeks.

Our first subtask was making the modifications necessary to the processor, memory, and
I/O boards of the Silicon Graphics (SGI) 4D/340 systems used in DASH. For example,
we needed to modify the processor boards and the I/O board (which has the arbiter) to
force the processor off the bus when it makes a remote-memory request and eventually be
able to respond to the processor when data has been retrieved. The memory boards
needed to be modified to recognize non-zero base addresses, plus a host of other changes.
All such modifications have now been completed and tested.

Our second subtask was to complete the design of the directory board and to build it.
Since our last report, we have split the single directory board into two boards---the
directory-controller board and the reply-controller board. In addition to accommodating
all the main logic, this allowed us to put a powerful performance monitor on each cluster.
The directory-controller board now contains the directory memory and the associated
state machines, the performance monitor, and one-half of the network interface. The
reply-controller board contains the reply controller (handles replies to this cluster's
remote requests), the pseudo-CPU (services requests from remote CPUs), the remote-
access cache, and the other half of the network interface. The design of both boards is
now complete. In fact, the directory-controller board has already been fabricated. We
have inserted the board into a modified SGI system and have tested much of its
functionality. The board seems to be working according to the specifications. The reply-
controller board was sent for fabrication on September 21 and should be back on October
5. Within a few days from that we will be ready to debug a multiple cluster DASH
system.

Before the boards were sent for fabrication, considerable effort was spent on ensuring
correctness through simulation. We built a detailed functional simulator of DASH that
closely modeled the DASH hardware. Several parallel applications were run on this
simulator and millions of clock cycles were simulated. We also ran the DASH protocol
verifier, a psuedo-random tester that exercises the coherence protocol, to ensure that a
large percentage of possible protocol interactions were tested. About 200K vectors,
directly generated from this functional simulator, were used to do gate-level simulations
using the VALID CAE software.

DASH is designed to be a general-purpose multiprocessor, and not as an attached
machine to some host. As such, it will support a full fledged operating system. In close
cooperation with Silicon Graphics, we are modifying the existing operating system on the
4D/340 (IRIX, a variation of UNIX System V) to work on DASH. Because of the
hierarchical nature of the DASH multiprocessor, as compared to the flat structure of the
4D/340, several major changes are required to the kernel. At this point, the boot up
sequence for the multiple cluster DASH has been defined. Most kernel data structures
have been adapted for the DASH architecture, and special tools have been developed in
order to automate the process of configuring the kernel for different cluster
configurations. The kernel locking system, the user locking system and the user MP
library are currently using the DASH hardware locks (with special added code to cover
the absence of the RC hoard). The capability of attaching processes or sets of threads to a
given processor has been extended to allow the attachment to clusters. Inter-cpu
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interrupts are currently being generated through the DASH hardware interrupt generation
facility. The operating system is now at a stage where it is ready to be run and debugged
on the multiple cluster DASH when it is powered up in early October.

In addition to the work being done on the prototype, we have been doing a number of
other architectural studies. One important topic is the performance benefits from weak
memory consistency models. Although, a number of models have been proposed in the
literature, no detailed performance results have been reported. We have done detailed
simulation studies to characterize the benefits [7]. Our results show that the sequentially
consistent models have significantly worse performance than the less strict models such
as processor consistency and release consistency. For the four benchmark applications
studied, the less strict models were shown to improve the processor utilization by as
much as 10-50% over a sequentially consistent implementation. The gains are expected
to increase with larger memory latencies that will be seen in future machines. We further
show that most of the benefits achieved by the less strict models are due to buffering of
writes and allowing reads to bypass pending writes. The ability to pipeline writes is not as
critical to performance, especially when reasonably deep write buffers were used. The
above results were shown for processors with blocking loads. We are currently doing
studies for processors with non-blocking loads, where the benefits are expected to
increase.

In another study [19], we evaluated the effectiveness of non-binding software-controlled
prefetching (as proposed in the Stanford DASH multiprocessor) in helping tolerate large
memory latencies observed in scalable multiprocessors. In adding prefetching to
applications, we found both the non-binding and software-controlled aspects to be
essential to obtaining good performance benefits, Non-binding prefetching allowed us to
fetch data far in advance, even though there was a possibility that data may not be used or
that it may be modified before use. Software control allowed us to be selective in only
prefetching data that was likely to miss in the cache, thus reducing overhead. It also
allowed us to move prefetches earlier than would have been possible in hardware
schemes that use a limited lookahead window. Our results show that for applications
with regular data access patterns---we evaluated a particle-based simulator used in
aeronautics and an LUa-decomposition application- --prefetching can be very effective. It
was easy to augment the applications to do prefefhing and it increased their performance
by 200-300% when we ppiefetched directly into the processor's cache. However, for
applications with complex data usage patterns, for example applications that make
extensive use of pointers and linked lists, prefetching was less successful. After much
effort, the performance of a dis tribsuted-time logic simulation application could be
increased only by 30%.

3.2 Modeling of Cache Coherence Directories
We have been studying various aspects of using directories to keep processor caches
consistent. These cache coherence directories record the caches that contain copies of
data, thereby allowing messages to be sent to only those caches that must receive them,
rather than broadcasting to every cache in the system. Directory-based coherence
schemes consume substantially less interconnection bandwidth than their broadcast-based
counterparts, and give the designer the flexibility of choosing any general point-to-point
network to interconnect the caches and main memory.

We have recently developed a model of reference behavior that allows us to predict the
performance of limited pointer directories under different program workloads. This will
allow us to properly evaluate several important trade-offs in the design and
implementation of these directories. For example, since the model predicts the number of
pointers needed under different circumstances, we can find the point of diminishing
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returns where adding additional pointers to each entry yields negligible performance
gains. Another application of our model is evaluating the mechanisms used when the
available pointers in an entry are exhausted. Developing schemes with good overflow
behavior will allow us to cut the number of pointers required even further.

The modeling effort is ongoing and is moving forward rapidly. Several useful models
have been developed and verified using simulations driven by address traces of parallel
programs. We are now evaluating early results from the models. Though our
conclusions are necessarily still preliminary, it appears that limited pointers schemes can
substantially reduce the width of each directory entry for machines with hundreds or
thousands of processors.

4. Parallel Software

4.1 Compiler Research
The state of our compiler is that it has started to produce correct sequential code. It can
now generate correct, unoptimized code for several of the large programs from the
Perfect Club benchmarks. These Fortran programs wcre first converted into C, then our
intermediate format, and finally into MIPS assea'bly code. This shows that the basic
implementation is solid. The various adv'nced modules are now at different stages of
implementation; they include data dependence analysis, various scalar optimizations
including register allocation, flow graph optimizations for parallelism, the loop
transformer, array renaming, superscalar instruction scheduler, and the run-time system.
Our goals are not to just develop new compiler technology, but also evaluate them
experimentally.

We have developed a new approach to data dependence analysis. Data dependence
testing is the basic step in detecting loop level parallelism in Fortran-like languages.
Current methods sacrifice potential parallelism to improve compiler efficiency. We have
developed a small set of efficient algorithms, each one exact for special case inputs.
Combined, they are exact for almost all the cases we see in practice. We also introduce a
memorization technique to save results of previous tests, thus avoiding calling the data
dependence routines multiple times on the same input. Finally, we introduce new
pruning techniques, allowing us to also compute direction vectors more efficiently. We
applied the algorithm to the Perfect Club Benchmarks, a set of 13 scientific Fortran
programs ranging in size from 500 to 18,000 lines. We show both that our memorization
technique allows us to eliminate most tests and that the large majority of remaining tests
can be solved exactly using our simple algorithms. Combining these with a moderately
expenqive backup test, we are able to be exact in every case at a very reasonable cost.

We have developed a theory that unifies many existing loop transformations, including
loop interchange or permutation, skewing, reversal, tiling, and combinations of these
elementary transformations [34]. This theory provides the foundation for solving an open
question in compilation for parallel machines: which loop transformations and, in what
order, should they be applied to achieve a particular goal, such as maximizing parallelism
or data locality. We have developed efficient algorithms for these problems that will find
the optimal solution in most cases.

To maximize locality, the algorithm can be divided into two steps. The first step of loop
transformations and blocking can be performed without deciding on the block size of the
final code. The block sizes can then be chosen after the loops have been transformed
While it is well known that blocking numerical code is an important optimization to

6



increase the performance of memory hierarchy in general, the behavior of caches on
blocked code is not known. The conventional wisdom is to choose the block sizes that
will use some fixed fraction of the cache. Our experiment [17] suggests otherwise. We
have obtained a significant set of data on the performance of caches for blocked code and
evaluated several optimizations for it. The data is obtained by a theoretical model of data
conflicts in the cache, which is validated by substantial amounts of simulation. We show
that: the performance is extremely sensitive to the stride of data accesses. To minimize
the expected number of cache misses, the code should attempt to use only a small
percentage of the cache within each block. Increasing the block size to use more of the
cache may severely degrade the performance of the machine. Using different block sizes
for different matrices can improve the miss rates and reduce the variance in performance
for different problem sizes. Finally, whenever possible, it is beneficial to copy non-
contiguous data into consecutive locations.

4.2 Solving Sparse Matrix Problems Efficiently
We are currently looking at the problem of efficiently solving large sparse systems of
equations on hierarchical memory uni- and multi-processors [20, 21, 22, 23]. This is an
important problem; the solution of such systems is the bottleneck in a wide variety of
domains, including linear programming, device simulation, and computational fluid
dynamics. Hierarchical memory multiprocessors offer the potential to solve such
problems both extremely quick and cost-effective.

The particular method we have been investigating for solving sparse systems is Cholesky
factorization. The main focus of our research has been on the use of blocking techniques
to improve the performance of sparse Cholesky factorization. Blocking has been
successfully exploited by a number of researchers to reduce cache miss-rates, and thus
improve performance, for dense linear algebra algorithms. The LAPACK dense linear
algebra package, for example, makes extensive use of blocking techniques. Blocking can
briefly be described as a reordering of the steps of an algorithm to increase data locality.
A block of data that fits in a fast level of the memory hierarchy is loaded into this fast
memory and reused many times before another block is loaded. The blocking done for
dense linear algebra algorithms relies heavily on the extremely regular structure of a
dense matrix computation. Sparse problems, in general, lack this regularity and thus are
less amenable to blocking.

Blocking is made possible in sparse Cholesky factorization by the presence of large sets
of columns in the factor matrix, called supernodes, that have nearly identical non-zero
structures. Originally examined in the context of vector supercomputers, these
supernodes dramatically increase the regularity of the sparse factorization computation.
For vector supercomputers, this increase results in increased vectorization. In the context
of hierarchical memory machines, we have used supernodes to make effective blocking
possible. The result is substantially higher performance.

A blocked approach to sparse Cholesky factorization has a number of implications for
parallel sparse factorization. The primary implication is that it greatly increases the task
grain size, making distribution of work among the processors more difficult. Through
heuristic partitioning of tasks, however, a reasonable balance can be reached between the
efficiency of a fully blocked code and the load balancing problems that would result from
too large a task grain size.

The major contributions of our work are as follows. We have performed an in-depth
study of the performance of the important sparse Cholesky factorization computation on a
class of machines that has so far not bccn considcrcd in this contoxt. Previous studics of
Cholesky factorization have considered its performance on either vector supercomputers
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or scalar machines without cache memory, both of which present very different
considerations. We have also proposed a number of new blocking approaches for
reducing cache miss-rates. We have extended these techniques to hierarchical memory
multiprocessor systems, where blocking greatly complicates previous approaches to
parallel sparse factorization. We have proposed task partitioning techniques that
overcome the majority of these complications. The results of our studies have indicated
that blocking is an extremely effective technique for improving the performance of sparse
Cholesky factorization on hierarchical memory machines. We have obtained
computation rates of approximately 40 double-precision MFLOPS for a range of sparse
problems on an 8-processor Silicon Graphics 4D/380 multiprocessor, more than twice the
performance of unblocked approaches.

4.3 Language Research
Our language research is directed at complementing our compiler research. Although
parallelizing compilers have had some success with statically analyzable parallel loops,
they have been unable to automatically extract available task-level concurrency. The
reasons are that they are unable to automatically partition programs into a reasonable set
of coarse-grain tasks, and compilers' conservative dependence analysis generates spurious
data dependences, which unnecessarily serialize the computation. Programmers, on the
other hand, have the high level program knowledge necessary to exploit coarse-grain
concurrency. A programmer usually has little difficulty determining both a reasonable
task decomposition for a program and the precise side effect information which enables
the identification of concurrently executable tasks; the programmer's main problem is
getting the compiler and run-time system to understand and utilize this information. To
solve this problem, we have developed a programming language called Jade which
enables the exploitation of coarse-grain concurrency by allowing a programmer to easily
express this program knowledge [16].

Starting with a sequential program, a programmer simply augments those sections of
code to be parallelized with side effect infon'nation. The compiler and run-time system
use this side effect information to concurrently execute the program while respecting the
program's data dependence constraints.

Languages that contain explicit synchronization primitives can be viewed as parallel
"assembly" programming languages. Programs written in these languages must be tuned
when ported to machines with different characteristics. Jade programs preserve the
programmer's high-level program knowledge, making it possible for the compiler and
run-time system, not the programmer, to exploit this knowledge when implementing
machine-dependent optimizations.

5. Uniprocessor Architecture

5.1 Super-Scalar Computers
For the past six months, we have concentrated effort on the hardware and software
aspects of the new architecture that we proposed for superscalar processors. This
architecture tries to combine the advantages of dynamic and static scheduling techniques,
while minimizing the short-comings of each, to increase the performance of non-
numerical applications.

Early in this six-month period, we completed a paper [261 that describes the basics of the
new superscaiar architecture and gives preliminary results on its effectiveness. We call
our new architecture TORCH. This architecture introduces boosting as a technique to



allow the compiler to specify speculative execution. Boosting allows instructions to be
scheduled for execution before a conditional branch upon which the instructions are
dependent is scheduled. When an instruction is scheduled before a controlling conditional
branch, the sequential instruction becomes a boosted instruction which is signified by a
separate encoding. The hardware in TORCH takes care of maintaining the sequential
state by buffering the side effects and results of boosted instructions until the conditional
branch they are dependent upon is executed. Through the use of a trace-driven
simulation, we found that a straightforward implementation of TORCH (including both
simple hardware and a limited software instruction scheduling) competes with an
aggressive, dynamic-scheduled superscalar processor on non-numerical applications.

With this encouraging data, we proceeded to develop a more complete software
scheduling algorithm to exploit the instruction-level parallelism in the non-numerical
code. We plan to implement this algorithm in a real compiler that we are building here at
Stanford. The implementation is designed to be general enough to provide for
experimentation with a variety of hardware configurations. It will be able to generate
code for VLIW-like processors and for TORCH processors, The algorithm is similar to
trace scheduling in that it takes a more global look at the program during code generation
and scheduling in order to better utilize the instruction-level parallelism in a program.
The algorithm differs from the original definition of trace scheduling in that it uses more
control flow and control dependence information in order to limit the amount of code
expansion. We plan to evaluate the scheduling algorithm and different hardware
configurations through trace-driven simulation. As an aside, this evaluation system will
also be able to be configured to provide data on the effectiveness of software scheduling
in dynamically-scheduled superscalar processors.

6. Computer-Aided Design

6.1 Bisim
Work on Bisim is an attempt to construct a switch level simulator for digital circuits
whose capabilities bridge the space between traditional switch level simulators and circuit
simulators. Our principle goal is to create a switch-level simulator for MOS, ECL and
BiCMOS circuits. However, we believe this framework will also allow the user to make
a speed/accuracy tradeoff as well, allowing him to use different accuracies for different
parts of the circuit.

Circuit simulation and switch level simulation have traditionally used disparate circuit
analysis techniques to achieve different goals. Circuit simulators [1] are constructed to
allow the accurate simulation of arbitrary circuits. They typically utilize nonlinear
transistor models and place few restrictions on the circuit topology. Numerical
integration is used to analyze the response of the circuit. Because the complexity of
these algorithms is O(nA3) [2], circuit simulators can only simulate relatively small
portions of an integrated circuit.

ma contrast, switch level simulators take advantage of the fact that the full generality of a
circuit simulator is unnecessary for predicting the first order behavior of most digital
MOS circuits. In order to achieve increased simulation speed, switch level simulators 131
decompose the circuit into small clusters which are analyzed individually, restrict the
topology of these clusters to transistor-capacitor trees, and restrict the transistor model to
that of a switched resistor. The Elmore delay [4] [51 [61 is then used to estimate
waveforms and delays. Analysis of this limited class of circuits can be very fast; up to
three orders of magnitude faster than circuit simulation. Because the computational
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complexity of switch level algorithms is O(n) 16], these simulators can be applied to
entire integrated circuits. However, there are frequently small portions of the circuit
which must be simulated at the circuit level because the simplified switch models do not
allow the accurate prediction of their behavior.

Recently, researchers 171 have .- tended the Elmore Delay and moment techniques to; 1)
allow the computation of arbitrarily accurate waveform estimates through the use of
higher order moments, and 2) allow the analysis of arbitrary linear networks including
floating capacitors, inductors, and dependent sources in arbitrary topologies. Thus,
Asymptotic Waveform Estimation extends the techniques originally developed for switch
level simulation to the estimation of arbitrarily accurate responses of general linear
circuits. These techniques have (apparently) been combined with piecewise linear
transistor models to form a simulator, AWEsim 18], which possesses many of the
capabilities of a traditional circuit simulator.

Unfortunately, the tree/link analysis used by AWEsim is not as efficient as the RC tree
analysis techniques for the particular case of RC trees. The complexity of tree/link
analysis applied to RC trees is 0(n"2) [9] as opposed to 0(n). This has lead to a recent
attempt 19] to accelerate the analysis through the use of Path Tracing. However, although
this work succeeds in reducing the number of multiplies to 0(n), the number of additions
remains O(nA2). Furthermore, RC tree analysis has been generalized [10] to handle
multiple sources while retaining linear complexity. As described, the complexity of the
Path Tracing algorithm is 0(nA3) if there is a resistor to ground at each node.

Our approach is to implement the theoretical ideas in Asymptotic Waveform Estimation
using an extension of the efficient tree analysis techniques developed for switch level
simulation. We will then embed this delay analysis technique into a switch level
framework to produce a simimlator which can run almost as fast as switch level simulators
for the simple device models and topologies required for most of a digital MOS circuit,
but which can simultaneously simulate the more complex portions of the circuit at the
cost of increased run time.

We will first assume that a digital circuit can be partitioned into channel connected
"clusters" with identifiable inputs and outputs. It is assumed that the delay of a cluster
can be analyzed iodependently of all other clustcrs once the input waveforms are known.
The interaction between clusters is therefore restricted to take place via the inputs and
outputs. An event driven scheduling mechanism will be used to simulate these
interactions.

We initially restrict the topology of a cluster to be a trarsistor capacitor tree (possibly
with multiple sources) because efficient algorithms exist for the computation of its
moments. We will then show that the RC tree algorithms can be generalized to include
trees of general linear three terminal networks (where the third terminal of each network
is connected to ground). This allows us to utilize arbitrarily complex piecewise linear
circuits to model transistors, The analysis of any particular circuit state still has
complexity O(n), although we will have to perform the analysis multiple times as regions
of linearity are crossed.

We will demonstrate the feasibility of the approach by creating the simulator and then
applying it to the simulation of various MOS, ECL, and BiCMOS digital circuits.
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6.2 IRSIM
Our research consists of creating a set of CAD tools for the verification of MOS digital
designs using incremental techniques. An incremental tool is characterized by a run time
proportional to the size of a design change rather than the size of the entire design.

We have concentrated on two programs: incremental simulator, and incremental netlist
extractor.

Our incremental simulator, IRSIM [1], attempts to decrease the time required to validate
a design following a set of modifications by the user. The simulator takes advantage of
the fact that, after an initial design, modifications have a low impact on the overall
correctness of a design. This means that much of the computation performed in
simulating a modified circuit are identical to those performed during previous
simulations. By saving and reusing previous results, substantial savings in computation
time can be achieved.

Until now, users were required to manually provide netlist-change commands to the
simulator; a time consuming and eiror prone operation. To remedy this situation, we are
adapting our layout editor, Magic [2], to perform incremental circuit extraction and
automatically generate the netlist-change commands required by the simulator. Magic is
a hierarchicii layout editor that allows nearly arbitrary overlap between cells. Its
extractor is hierarchical and supports a reduced notion of incrementalness by extracting
each cell independently of its context so that only modified cells and its ancestors need to
be re-extracted. Prior to simulation, the extracted (hierarchical) netlists need to be
converted into a flat netlist.

The successful use of incremental techniques on large designs hinges on the problem of
quickly identifying the modified portions of a design and communicating these changes
to the incremental simulator. The problem is not as obvious as it seems, since in a
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hierarchical design system, even simple changes to the layout, such as deleting a piece of
paint, may result in many changes to the underlying (flat) netlist. Conversely, large
changes to the geometry, such as moving a subcircuit from one place to another or
renaming a terminal, may result in no electrical changes to the netlist. The basic problem
is that each tool operates on a different description of the same circuit; hierarchical mask
geometry versus flat electrical netlists.

The required netlist changes could be identified by using Magic's extractor to extract the
modified cells and then flatten the design and compare the resulting netlist to the original.
Although this approach is possible, the overhead associated with flattening and
comparing large netlists can quickly become prohibitive as the size of the design
increases.

To solve this problem, our extractor uses a finer granularity than just cells: regions of
change. This is accomplished by recording all areas modified by the user during an
editing session and then re-extracting only these areas in their proper (flat) context for
both the updated and the original network. The two netlists are then electrically
compared against each other and the differences are reported to the simulator.

We have developed an extractor that is capable of extracting non-rectangular areas and
(possibly) incomplete circuits while still maintaining the correct hierarchical position of
each node or device in the flat netlist. Incomplete descriptions usually occur due to the
overlap of one or more unmodified cells within a changed area, or when the change only
consists of a device re-size.

The extracted netlist is represented as a graph where nodes and devices are represented as
graph vertices, and the graph edges correspond to connections between nodes and
devices. Representing netlists as graphs reduces the problem of comparing them to the
well-known problem of graph isomorphism between 2 graphs [3-5]. Although the
general problem is known to be NP-complete, for circuit (near planar) graphs several
algorithms have been proposed to check for isomorphism, However, most of these
algorithms either simply indicate whether the 2 graphs are isomorphic or just indicate the
elements that aren't equivalent [6-9]. Our problem calls for finding the isomorphism
function (the transformations needed to convert one graph into the other).

The netlist comparator is based on a graph isomorphism approach that uses graph-
invariants but in addition uses the information available to circuit graphs such as
transistor type, terminal connection (i.e. source or gate), and connections to
corresponding nodes. These nodes are found by observing that any connection to a node
outside a changed area must be the same in both netlists. These equivalent nodes provide
the algorithm with a good starting point. The algorithm's goal is then to keep partitioning
the 2 graphs until each vertex is uniquely identifiable and then determining whether that
vertex has its counterpart in the other graph. Vertices (devices/nodes) found only in the
current graph will be added, those appearing only in the old graph will be deleted.

In addition, in order to keep differences from propagating throughout the graph,
differences are "fixed" as soon as they are identified. For example, a transistor whose
gate and drain are connected to the same nodes in both graphs is not deleted but rather,
the differing terminal is connected to the new corresponding node. This keeps the
algorithm from diverging in the presence of minor differences; a common problem with
netlist comparators.

Status:
* incremcntal extractor has been fully implemented and tested.
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- netlist comparator is under development.
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6.3 Verification Techniques
Under other funding, we are developing programs to help analyze protocols and
controllers that are used in hardware. Protocols and controllers are susceptible to subtle
design errors which are difficult to detect and diagnose by simulation or prototyping. Our
approach is to use state graphs both to model the actual behavior of implementations and
to specify their desired behavior. We are applying these techniques to the DASH cache
coherence protocol, in the hope that we can prove it correct or accelerate the debugging
of the system.

We are constructing software tools that can compare finite-state representations of
systems with specifications in the same form. The tool can derive the state graph from a
program or other operational description. The analysis can consist of checking for a
known interesting property (such as deadlock), making sure that a property (an invariant)
is true in all reachable states, or comparing for consistency with a second finite state
graph.

We are using two different approaches for exploring the state space. In the first approach,
the protocol is described using condition/action rules (similar to guarded commands).
The system state space is generated by simulating all firings for the rules, while saving all
states in a large hash table. This method has the advantage that it is easy to implement,
and the protocols are easy to describe. However, it suffers from the "state explosion
problem" --- the protocol can generate too many states to fit in memory.

Our second approach is to use a symbolic representation of the state space, such as a
boolean formula. The advantage of symbolic representations is that large sets often have
simple structure which can be captured in a small symbolic form. We are currently using
ordered binary decision diagrams, a widely-used representation of boolean functions for
digital computer-aided design systems.

For a large system like DASH, the firt step in verification is to reduce the description of
the system so that it is still likely to exhibit any errors, but hits relatively few states. For
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example, our current description has three clusters, three memory lines, and one bit of
d.ta in each memory line. We now have a description which models all of the basic
memory transactions. Using the first method (hash table), this description generates more
than 250,000 states. We have not yet discovered any bugs in the protocol, but we have
found several unexpected events that were not covered in the documentation.

Our future plans are to add more details to the protocol description for use in the
symbolic analyzer, and to check more complicated properties. For example, we will
compare our description of the DASH behavior with a state machine describing the
correct user-visible behavior (release consistency). We are also enhancing the tools,
especially their ability to handle larger state spaces. We will be modifying the DASH
description accordingly to take advantages of these improvements.

6.4 Partitioning of Functional Models
We have studied a technique aiming at multiple-chip synthesis from a a single high-level
model in a Hardware Description Language (HDL). The partitioning of hardware
functions in a chip set is crucial in achieving an efficient implementation. While hardware
partitioning is dictated by the chip area limitations, it affects the performance of the
overall system. The purpose of this research is to investigate computer-aided partitioning
techniques that allow efficient implementation of hardware in multiple chips.

Unlike previous approaches, we use a partitioning technique performed at the functional
abstraction level, where the digital hardware being designed is represented by a
sequencing abstraction model capturing the operations to be performed and their
dependencies. Such a functional model is a common abstraction in high-level synthesis,
because it can be obtained by compiling a hardware description in a HDL and it forms a
convenient data-structure for synthesis algorithms.

Our partitioning approach is motivated by the following reasons. We assume that the
hardware being designed is synthesized from a high-level model in a HDL under a
maximum timing constraint on the overall hardware latency. By using high-level
synthesis techniques, the designer may try first to find a design configuration (i.e. binding
and schedule) that satisfies the chip area and latency constraints. When such a structure
cannot be found, then partitioning is used to overcome the area limitations while meeting
the timing requirements. It is important to note that partitioning may introduce timing
penalties, due to the inter-chip communication delays. For this reason, the designer will
choose a design configuration that satisfies the latency constraint as a starting point for
partitioning. Thus the search for a binding (that defines the hardware sharing) is done
prior to partitioning, and it benefits the partitioning method in providing a starting point
with an estimated area smaller than an unbound configuration,

This approach is important for hardware prototyping using programmable gate arrays
that have a limited capacity in terms of gate count. By using the same functional model
in a HDL, both a multi-chip prototype and the final implementation can be synthesized
automatically. Bounds on the latency of the prototype are important to insure that
accurate performance measures can be derived from it.

A major advantage of applying partitioning techniques at the functional abstraction level
is that scheduling techniques can be applied concurrently to partitioning. Therefore, the
overall latency of a partitioned structure can be readily evaluated, including the inter-chip
communication delays. In this way, area-performance trade-offs can be exploited.
Secondly, the functional model allows us to capture large hardware systems with fewer
tbjccls thaun at the logic netlist abstrartion level. As a result, the partitioning algorithms
are more efficient for large scale designs.
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We have formulated the high-level partitioning problem as a constrained hypergraph
partitioning problem and researched the application to this model of the Kernighan-Lin
and the Simulated Annealing algorithms. A computer implementation in the program,
Vulcan, has shown that the technique is viable.

6.5 Simulation
Initially, a simulator integration framework and algorithms were investigated. It was
followed by a first prototype to obtain a running multi-level mixed-mode simulator on
conventional workstations. The next step is to extend the prototype to run on parallel
machines.

The framework of interest was a distributed discrete-event simulation within a set of
communicating elements that exchange information through messages and distributed
time. We started with the well-known time-stamped algorithms (Chandy and Misra) to
reduce deadlock occurrence, increase concurrency, and reduce communication traffic
overhead. The concepts of "intervals", rather than time stamps, are used to represent the
period of time during which an event is valid in a simulation. With their use, there are
situations in which a simulated element will not block while it would have otherwise if
time-stamped messages were used. The use of labels on interval messages was introduced
to allow messages to detect loops and obtain event scheduling optimizations. An
interesting feature of intervals is that it allows simulation of future intervals in present
time. These results were presented in the SCS Multiconference on Modeling and
Simulation on Microcomputers [27].

A prototype to test and explore these concepts in a parallel multi-level mixed-mode
simulation is under development. The simulators being integrated consist of THOR, a
behavioral simulator for use with digital circuits at either the functional, register transfer
or gate level, IRSIM, a switch-level simulator for MOS circuits, and SPICE, a general-
purpose circuit-level simulator. This prototype is like a printed circuit board backplane
where existing simulator programs are plugged in to run in parallel either at the same
design level or at different design levels to function as a harmonic simulator. Basically, it
consists of a kernel to handle the interface to simulators and coordinate their computation.
It uses the concepts mentioned above for interval messages, and labeled messages within
loops. Also, it handles conversion between design levels as in the case of iogic signals
and circuit signals. In this case, it uses known solutions as a threshold function between
circuit to logic and a step/ramp function between logic to circuit.

A first prototype version was implemented and it is currently being tested. The goal is to
test and explore the concepts mentioned above and to obtain a running multi-level mixed-
mode simulation on conventional workstations. It consists of a modified version of the
simulators being integrated and a common kernel that handles their interfaces and
synchronization. This first prototype system is used for the verification of an adaptive
signal processing system at both the chip and he board levels, and for the design of a
complex CMOS Viterbi detection chip.

The second prototype version to be initiated will port this system to a multiprocessor
system. This task will require a change of a localized and relatively small portion of the
kernel that handles the communication between different instances of the simulators.
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7. VLSI Design

7.1 Zero-Overhead Self-Timed Circuits
We have been looking at methods of building highest performance self-timed circuits.
To accomplish this goal required finding a method to eliminate the control overhead that
is normally associated with a self-timed design. This overhead arises from the fact that
one usually needs to detect completion and then use this information to control the
circuit. For most self-timed designs this control path ends up in the critical path.

We have developed a method of designing circuit with zero-overhead, precalculating the
control information for each block. This method allows the control signals to enable a
block before valid data arise at its inputs. The cost of this technique is a slight increase in
hardware, since there needs to be enough stages between where the control signal is
generated and used, so that the control delay can be hidden. To test this technique we
designed and fabricated a 54bit self-timed divider. The chip used five stages connected
in a self-timed ring, and was fabricated in a 1.2u CMOS technology by MOSIS. The 7
mm2 chip calculates a new quotient bit every 2.7ns at room temperature and 5V. Since
the ring is self-timed, it is easy to measure its performance -- on connects, the power and
simply measures the loop time.

7.2 BiCMOS SRAMS
The requirement of ECL-CMOS level conversion slows the access of traditional
BiCMOS static RAMS. The CMOS-storage, emitter-access (CSEA) memory cell
overcomes this limitation by placing a bipolar transistor into the memory cell itself. This
cell allows a read path consisting entirely of low (ECL-ish) voltage swings which may be
implemented using fairly standard ECL circuit techniques borrowed from bipolar static
RAMS. As an outgrowth of our work on a sub-4 ns, 64Kbit BiCMOS static RAM [33],
we have identified two areas which merit additional attention. We have been looking into
techniques to reduce access-time penalties due to supply noise coupling into the bit line
sense circuits and the feasibility of the CSEA cell in embedded (wide access path) cache
memories for BiCMOS microprocessors.

Traditional static RAM design avoid problems with power supply noise slowing sense
times by using fully-differential circuit techniques which can make the noise look
common-mode to the sensing circuitry. However, the CSEA cell only provides one bit
line for reading, so single-ended circuit techniques are used for sensing. These problems
are exacerbated by heavily data-dependent supply coupling into the bit lines; the base-
emitter capacitance of each emitter-follower forming the wired-or bit line is tightly
coupled to either the positive supply (Vcc) or the negative supply (Vee), depending on
the data stored in the cell. Note that this means the amount of charge dumped onto the bit
line is dependent on the data stored in the unselected cells on that bit line. This prevents
the use of a fully-differential CSEA cell (two followers and two bit lines) to make the
noise coupling common-mode. it also limits the use of replica techniques in the
reference-generating circuitry (as used in dynamic RAM design) because the replica
circuit needs to have the same values stored in its unselected cells in order to experience
the same coupling.

Our design senses the selected cell's value by comparing it to a reference voltage by
turning the bit line into the shared node of a large ECL OR gate; the selected cell's
follower and a sense device with the reference tied to its base form a differential pair.
The presence or ab.ence of current in this sense device is the signal read by the sense
amp. In order to save power and circuitry, this sense amp is shared between many bit

16



lines; the current from a sense device is summed with that from other sense devices
(which should be zero if the associated bit line is unselected) at the emitter of a cascode-
connected bipolar device (in order to reduce the voltage swing on a highly-capacitive
node). A two-level network of these reduces the maximum nodal capacitance and hence
speeds access.

Our approach to the supply noise issues relies on the large bit line current densities that
the bipolar transistor in the memory cell allows. Simulations indicate that, worst case, we
should be able to withstand substantial supply bounce without losing more than a quarter
of our sense current. Design of the sense device's reference generator must take into
account that supply noise coupling onto this reference is dependent on the values stored
in all cells, since even unselected bit lines couple to this node through their sense devices'
base-emitter capacitance. Preventing this reference from ever bouncing more than a
selected bit line will avoid problems with excess/lost current due to reference bounce.
Supply coupling issues affect the design of the cascode reference as well; because
cascode trees without a selected bit line must not be allowed to generate substantial
currents when their emitter node bounces, the reference generator is designed to track the
emitter bounce of unselected trees. Finally, replica techniques are used to generate the
reference voltage for comparison with the sense amp output; a dummy bit line with
"average" coupling and half the normal selected current is fed into an equivalent cascode
network.

Work on using the CSEA cell for embedded memories continues. A significant question
is whether there is an alternative to such high bit line currents (for noise immunity), since
this current will add up to very substantial power for very wide (hundreds of bits) access
paths.
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The Directory-Based Cache Coherence Protocol
for the DASH Multiprocessor
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Abstract rcso Presr

DASH is a scalable shared-memory multiprocessor currently Cemor Cache

being de'.eloped at Stanford's Computer Systems Laboratory.
"The archite, .uve consists of powerful processing nodes, each
with a portion of the shared-memory, connected to a scalable m

interconnect-ion network. A key feature of DASH is its dis- -
tributed directory-based cache coherence protocol. Unlike tra-
ditional snoopy coherence protocols, the DASH protocol does
not rely on broadcast; instead it uses point-to-point messages
sent between the processors and memories to keep caches con- Pn'ceaor PocesrN
sistent. Furtiermore, the DASH system does not contain any C .. ,uhtCry
single serialization or control point. While these features pro- 0
vide the basis for scalabilir, they also force a reevaluation of tk
many fundamental issues involved in the design of a proto-

col. These include the issues of correctness, performance and Cache

protocol complexity. In this paper, we present the design of
the DASH coherence protocol and discuss how it addresses the Figure 1: General architecture of DASH.
above issues. We also discuss our strategy for verifying the
correctness of the protocol and briefly compare our protocol to
the IEEE Scalable Coherent Interface protocol. ganization of the prototype, called DASH (Directory Architec-

ture for SHared memory) [17], is shown in Figure 1. The ar-
chitecture consists of a number of processing nodes connected

1 Introduction through a high-bandwidth low-latency interconnection network.
"The physical memory in the machine is distributed among the

Tne limitations of current uniprocessor speeds and the ability to nodes of the multiprocessor, v%2'i all memory accessible to each
replicate low cost, high-performance processors and VLSI comn- node. Each processing node, or cluster, consists of a small
portents have provided the impetus for the design of multipro- number of high-performance processors with their individual
cessors A hich are capable of scaling to a large number of pro- caches, a portion of the shared-memory, a common cache for
cessors. Two major paradigms for these multiprocessor archi- pending remote accesses, and a directory controller interfacing
tectures ha~e developed, message-passing and shared-mcmory. the cluster to the network. A bus-based snoopy scheme is used
In a message-passing multiprocessor, each processor has a lo- to keep caches coherent within a cluster, while inter-node cache
cal memory, which is only accessible to that processor. Inter- consistency is maintained using a distributed directory-based
processor communication occurs only through explicit message coherence protocol.
passing. In a shared-memory multiprocessor, all memory is ac- The concept of directory-based cache coherence was first pro-
cessible to each processor. The shared-memory paradigm has posed by Tang 1201 and Censier and Feautrier [6]. Subsequently,
the advantage that the programmer is not burdened with the it has been been investigated b) others (11],[2] and 1231). Build-
issues of data partitioning, and accessibility of data from all ing on this earlier work, we have developed a new directory-
processors simplifies the task of dynamic load distribution. The based cache-coherence protocol which works with distributed
primary advantage of the message passing systems is the ease directories and the hierarchical cluster configuration of DASH.
with which they scale to support a large number of proces- The protocol also integrates support for efficient synchroniza-
sors. For shared-memory machines providing such scalability bon operations using the directory. Furthermore, in designing
has traditionally proved difficult to achieve, the machine we have addressed many of the issues left unre-

We are currently building a prototype of a scalable shared- solved by earlier work.
memory multiprocessor. The system provides high processor In DASH, each processing node has a directory memory cor-
performance and scalability Lthough the use of coherent caches responding to its portion of the shared physical memory. For
and a directory-based coherence protocol. The high-level or- each memory block, toe directory memory stores the identities
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of all remote nodes caching that block. Using the directory utilize a relatively strong consistency model, the larger latencies
memory, a node writing a location can send point-to-point in- found in - distributed system favor the less constrained models.
validation or update messages to those processors that are ac- Deadlock: A protocol must also be deadlock free. Given
tually caching that block. This is in contrast to the invalidating the arbitrary communication patterns and finite buffering within
broadcast required by the snoopy protocol. The scalability of the memory system there are numerous opportunities for dead-
DASH depends on this ability to avoid broadcasts. Another im- lock. For example, a deadlock can occur if a set of transactions
portant attribute of the directory-based protocol is that it does holds network and ,-iffer resources in a circular manner, and
not depend on any specific interconnection network topology, the consumption of one request requires the generation of an.
As a result, we can readily use any of the low-latency scalable other request. Similarly, lack of How control in nodes can cause
networks, such as meshes or hypercubes, that were originally requests to back up into the network, blocking the flow of other
developed for message-passing machines [7], messages that may be able to release the congestion.

While the design of bus-based snoopy coherence protocols Error Handling: Another issue related to correctness is sup-
is reasonably well understood, this is not true of distributed port for data integrity and fault tolerance. Any large system will
directory-based protocols. Unlike snoopy protocols, directory- exhibit failures, and it is generally unacceptable if these fail-
based schemes do not have a single serialization point for all ures result in corrupted data or incorrect results %ithout a fail-
memory transactions. While this feature is responsible for their ure indication. This is especially true for parallel applications
scalability, it also makes them more complex and forces one to where algorithms are more complex and may contain some non-
rethink how the protocol should address the fundamental issues determinism which limits repeatability. Unfortunately, support
of correctness, system performance, and complexity. for data integrity and fault-tolerance within a complex protocol

The next section outlines the important issues in designing t',i attempts to minimize latency and is executed directly by
a cache coherence protocol. Section 3 gives an overview of hardware is difficult. The protocol must attempt to balance the
the DASH hardware architecture. Section 4 describes the Oe- level of data integrity with the increase in latency and hard-
sign of the DASH coherence protocol, relating it to the issues ware complexity. At a minimum, the protocol should be able to
raised in section 2. Section 5 outlines some of the additional ,2E all detectable failures, and convey this information to the
operations supported beyond the base protocol, while Section 6 processus affected.
discusses scaling the directory structure. Section 7 briefly de-
scribes our approach to verifying the correctness of the proto- 2.2 Perrormance
col. Section 8 compares the DASH protocol with the proposed
IEEE-SCI (Scalable Coherent Interface) protocol for distributed Given a protocol that is correc, performance becomes the next
directory-based cache coherence. Finally, section 9 presents important design criterion. The two key metrics of memory
conclusions and summarizes the current status of the design system performance are latency and bandwidth.
effort. Latency: Perfor, ance is primarily determined by the la-

tecy experienced by memory requests. In DASH. support for
cachable shared data provides the major reduction in latency.

2 Design Issues for Distributed Coher- The latency of write misses is reduced by using write buffers

ence Protocols and by the support of the release consistency model. Hiding
the latency for read misses is usually more critical since the

The issues that arise in the design of any cache coherence pro- processor is stalled until data is returned. To reduce the la-

tocol and, in paricular, a distributed directory-based protocol, tency for read misses, the protocol must min~imize the number

can be divided into three categories: those that deal with cor- of inter-cluster messages needed to service a miss and the delay

rectness, those that deal with the performance, and those related associated with each such message.

to the distributed control of the protocol. Bandwidth: Providing high memory bandwidth that scales
with the number of processors is key to any large system.
Caches and distributed memory form the basis for a scal-

2.1 Correctness able, high-bandwidth memory system in DASH. Even with dis-

The foremost issue that any multiprocessor cache coherence tributed memory, however, bandwidth is limited by the serial-
protocol must address is corrctness. This translates ;nto re- ization of requests in the memory system and the amount of
quirements in thr areas: traffic generated by each memory request.

Memory Consistency Model: For a uniprocessor, the model Servicing a memory r.quest in a distributed system often

of a correct memory system is well defined. Load operations requires several messages to be transmitted. For example, a

return the last value written to a given memory location. Like- message to access a remote location generates a reply message

wise, store operations bind the value returned by subsequent containing the data, and possibly other messages invalidating

loads of the location until the next store. For multiprocessors, remote caches. The component with the largest serialization in

however, the issue is more complex because the definitions of this chain limits the maximum throughput of requests. Serial-
"last value written", "subsequent loads" and "next store" be- izaion affects performance byy increasing the queuing delays,

come less clear as there may be multiple processors reading and and thus the latency, of memory requests. Queueing delays can

writing a location. To resolve this difficulty a number of mem- become critical for locations that exhibit a large degree of shar-

ory consistency models have been proposed in the literature, ing. A protocol should attempt to minimize the service time

most notably, the sequential and weak consistency models [8]. at all queuing centers. In particular, in a distributed system no

Weaker consistency models attempt to loosen the constraints on central resources within a node should be blocked while inter-
the coherence protocol while still providing a reasonable pro- node communication is taking place to service a request. In this
grammuig model for the user. Although most existing systems way serialization is limited only by ot-he time of lcal, intrar.ode

opera14ons.
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The amount of traffic generated per request also limits the
effecti-e throughput of the memory system. Traffic seen by _.b
the global interconnect and memory subsystem increases the _.cl M-h

queueing for these shared resources. DASH reduces traffic by
providing coherent caches and by distributing memory among
the processors. Caches filter many of the requests for shared
data while grouping memory with processors removes private jc, 5"

references if the corresponding memory is allocated within the . I
local cluster. At the protocol level, the number of messages
required to service different types of memory requests should XW.
be minimized, unless the extra messages directly contribute to t. Y

reduced la'enc, or serialization.

2.3 Distributed Control and Complexity

A coherence protocol designed to address the above issues must -

be partitioned among the distributed components of the muld- Ifl * '

processor. These components inclcde the processors and their 12,A ]-l"•'
caches, the directory and main memory controllers, anid the in-
tercorinection network. The lack of a single serialization point,
such as a bus, complicates the control since transactions do not % j
complete atomically. Furthermore. multiple paths within the • "
memory system and lack of a single arbitration point within the
system allow some operations to complete out of order. The re-
sult is that there is a rich set of interactions that can take place Figure 2: Block diagram of sample 2 x 2 DASH system.
between different memory and coherence transactions. Pare-

tioning the control of the protocol requires a delicate balance transactions.Fii, t•ui s ability is critical to DASH, we have
between the performance of the system and the complexity of extended !lie MP13US orotocol to support a retry mecharusm.
the components. Too much complexity may effect the ability R rsno;e -. ,e sig'".it. ,, retry while the inter-cluster
to implement the protocol or ensure that the protocol is correct. messages art ;-.rg process,',' ro avoid unnecessary retries the

processor is !- aked from rxb,'.ation until the response from the
remote request has been received. When the response arrives,

3 Overview of DASH the reqCesting processor is unmasked, retries the request on the
bus, and is supplied the remote data.

Figure 2 shows a !Mgh-lcvel picture of the DASH trototype we A DASH system consists of a number of modified 4D1240
arc building at Stanford. in order to manage the size of the systems that have been supplenictied with a directory controller

prototype design effort, a commercial bus-based multiprocessor board. This directory controller b- srd is responsible for main-
%has chosen as the processing node Each node (or cluster) is tamning the cache coherence acros, n-e nodes and serving as the
a Silicon Graphics POWER Station 4D/240 [A]. The 4D/240 interface to the interconnection network.
system consists of four high-performance processors, each con- The directory board is implemented on a single printed cir-
nected to a 64 Kbyte first-level instruction cache, and a b4 Kbyte cult board and consists of five major subsystems as shown in
write-through data cache. The 64 Ybyte data cache interfaces Figure 3. The directory controller (DC) contains r"e directory
to a 256 Kbyte second-level write-back cache through a read memory corresponding to the portion of main mciory present
buffer and a 4 word dep write-buffer. The main purpose of this within the cluster. It also initiates out.bound net'A, .-k requests
second-level cache is to convert the write-through policy of the and replies. The pseudo-CPU (PCPU) is responri•ie for buffer-
first-lcvel to a write-back policy, and to provide the extra cache ing incoming requests and issuing such requests in the cluster
tags for bus snooping. Both the fist and second-level caches bus. It mimics a CPU on this bus on behalf of remote processors
are direct-mapped. except that responses from the bus are scnt out by toe directory

In the 4Dr240, the second-level caches are responsible for bus controller. The reply controller (RC) tracks outstanding requests
sinupii•g auid ina.itainig consistency among the caches in the made by the local processors anid receives and ouflers the corre-
cluster Consistency is maintained using the Illinois coherence sponding replies from remote clusters. It act, as memory %,hen
protocol [19], ,hich is an invalidatLon-based ownership proto- the local processors are allowed to retry their remote requests.
col. Before a processor can wnte to a cache line, it must first The nevork interface and the local portion of the network it-
acquire exclusive ownership of that line by requesting that all self reside on the directory card. The interconnection network
other caches invalidate their copy of that line. Once a processor consists of a pair of meshes. One mesh is dedicated to the re-
has exclusive ownership of a cache line, it may write to that quest messages while the other handles replies. These meshes
line without consuming further bus cycles, utilize vormhole routing [9] to minimire latency. Finally, the

The memory bus (MPBUS) of the 41)/240 is a pipelined syn- board contains hardware moriaormA; logi. and miscellaneous
chronous bus, suppomrtng memory .to-cache and cache-to-cache control and status registers. The mo-Jtoriig logic samples a
tran-sfers of 16 bytes every 4 bus tlocks with a latency of 6 bus variety of directory board and bus events from which usage and
clocks. While the MPBUS is pipthned, it is inot a ?plit transac- performance statistics can he derived.
tion bus. Consequently, it is not posi-,ile to effic;enty interleave The directory memor) is organ;zed as an array of directory
long duration remote transactions v.ith the shorn duration local
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Reply Nor ,-, gains are made at the cost of a more complex programming
S r ...... ,t,, "• I! model for the user.

Ms ,C.t,,d Chip forb Meshddboy R N__ "tS... Chip The base model of consistency provided by the DASH hard-
I Rd.,., U _s ware is called release c'-nsistency. Release consistency [10] is

an extension of the s.eak consistency model first proposed by
Dubois, Scheurich and Briggs 181. The distinguishing character-
istics of release consistency is that it allows memory operations

I issued by a given processor to be observed and complete out
of order with respect to the other processors. The orderýng of

R.ply C.M'olk' (RC) P-d~.c L (nP) Dir~iKr-y Fo.,,.r (OC) operations is only preserved before "releasing" synchrorization
S "- U r .. operations or explicit ordering operations. Release consistencyMAC) ~ ~ ~ t. t.- lýd-CP 14-1-,•coy DRAM1

,eM,,S .e. rc- 1 as to [" r-r, - , l ow. , t 9 takes advantage of the fact that % hile in a critical region a pro-
. ,., res , - grammer has already assured that no other processor is accessing

Re,,,d ton,,,o | the protected variables. Thus, updates to these variables can be]AC.-pe n b.. i ]Swr°fI -k. '"M observed by other processors in arbitrary order. Only before
7-- :V .. .the lock release at the end of the region does the hardware need

to guarantee that all operations have completed. While release
MPBU Remte Ccheconsistency does complicate programming and the coherence

a.. • protocol, it can hide much of the overhead of write operations.
Support for release consistency puts several requirements on

C .I the system. First, the hardware must support a prmiuitve which
guarantees the ordering of memory operations at specific points

MPI~ OSc. in a program. Such fence [5, 10] primitives can then be placed
by softs, are before releasing synchronization points in order to

Figure 3: Directory board block diagram. implement release consistency. DASH supports tsso explicit
fence mechanisms. A full-fence operation stalls the proces-

entries. There is one entry for each memory block. The direc- sor until all of its pending operations have been completed,
tory entries used in the prototype are identical to that originally while a write-fence simply delays subsequent write-operations.
proposed in 16]. They are composed of a single state bit to- A higher perfomiance implementation of release consistency
gether with a bit vector of pointers to clusters. The state bit includes implicit fence operations sithin the releasing synchro.
indicates whether the clusters have a read (shared) or read/write nization operations themselves. DASH supports such synchro-
(dirty) copy of the data. The bit vector contains a bit for each nization operatto:ts yielding release consistency as its base con-
of the sixteen clusters supported in the prototype. Associating sistency model. The explicit fence operations in DASH then
the directory with main memory allows the directory to be built allow the user or compiler to synthesize stricter consistency
with the same DRAM technology as main memory. The DC ac- rn ,dels if needed.
cesses the directory memory on each MPBUS transaction along lhe release consistency model also places constraints on the
with the access to main memory. The directory information is base coherence protocol. First. the system must respect the local
combined with the type of bus operation, address, and result dependencies generated by the memory operations of a single
of the snooping within the cluster to determine what network processor. Second, all coherence operations, especially opera-
messages and bus controls the DC will generate. tions related to writes, must be acknovledged so that the issuing

The RC maintains its state in the remote access cache (RAC). processor can determine when a fence can proceed. Third. any
The functions of the RAC include maintaining the state ..: cur- cache line owned with pending invalidations against it can not
rendy outstanding requests, buffering replies from the etwork be shared between processors. This prevents the new processor
and supplementing the functionality of the processors' cache- from improperly passing a fence. If sharing is allosed then
The RAC is organized as a snoopy cache with augmented state the receiving processor must be nloremed when all of the pend-
information. The RAC's state machines allow accesses from ing invalidates have been ackno, ledged. Lt.stly, any operations
both the network and the cluster bus. Replies from the network that a processor issues after a fence operation may not become
are buffered in the RAC and cause the waiting proessor to be visible to any other processor until all operations preceding the
released for bus arbitration. When the released processor re- fence have completed,
tries the access the RAC supplies me data via a cache-to-cache
transfer. 4 The DASH Cache Coherence Protocol

3.1 Memory Consistency in DASH In our discussion of the coherence protocol, we use the follow-
ing naming conventions for the various clusters and memoriesAs stated in Section 2, the correctness of wie coherence protocol involved in anveny tora ti. A loul cluster is a cluster

is a functin of the memory consistency model adopted by the ttvontdin tep, c given transacionust s le

arcirtecture. There is a whole spectrum of choices for the level the aote cluster is the cluster orhich contains the mar n metNory

of co:.sistency to support directly in hardware. At one end is the direct r a given hica moryadrs. a memote
sequential consistency model [161 which requires the execution clustery or cluster Likes ise address, r to

clus•ter is any other cluster. Likevkise. !ocal memiory refers to
of the parallel program to appear as some interleaving of the
execution of the parallel processes on a sequential machine. As temmain m y ae d
onememory is any meory whose home is not the local.

The DASh'. coher.,nce protocol is an invalidation-based own-
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ership protocol. A memory block can be in one of three states as remote home cluster is needed. If the cache line is held in a
indicated by the associated directory entry: (i) uncached.remote, dirty state by a local processor, however, something must be
that is not cached by any remote cluster: (ii) shared-remore, that done with the ownership of the cache line since the processor
is cached in an unmodified state by one or more remote clus- supplying the data goes to a shared state in the Illinois protocol
ters. or (iii) dirty-remote, that is cached in a modified state by used on the cluster bus. The two options considered were to: (i)
a single remote cluster. The directory does not maintain infor- have the directory do a sharing write-back to the home cluster,
marion concerning whether the home cluster itself is caching and (ii) have the RAC take ownership of the cache line. We
a memory block because all transactions that change the state chose the second option because it permits the processors within
of a memory block are issued on the bus of the home cluster, a cluster to mad and write a shared location without causing
and the snoopy bus protocol keeps the home cluster coherent, traffic in the network or home cluster.
While we could have chosen not to issue all transactions on the If a read request cannot be satisfied by the local cluster, the
home cluster's bus this would had an insignificant performance processor is forced to retry the bus operation, and a request
improvement since most requests to the home also require an message is sent to the home cluster. At the samne time the
access to main memory to retrieve the actual data. processor is masked from arbitration so that it does not tie up the

The protocol maintains the notion of an owning clustor for local bus. Whenever a remote request is sent by a cluster, a RAC
each memory block. The owning cluster is nominally the home entry is allocated to act as a placeholder for the reply to this
cluster. However, in the case that a memory block is present request. The R.AC entry also permits merging of requests made
in the dirty state in a remote cluster, that cluster is the owner, by the different processors within the same cluster. If another
Ordy the owning cluster can complete a remote reference for a -equest to the same memory block is made, a new request will
gr-en block and update the directory state. While the directory not be sent to the home cluster; this reduces both traffic and
entry is always maintained in the home cluster, a dirty cluster latency. On the other hand, an access to a different memory
irutates all changes to the directory state of a block when it block, which happens to map to a RAC entry already in use,
is the owner (such update messages also indicate that the dirty must be delayed until the pending operation is complete. Given
cluster is giving up ownership). The order thai operations reach that the number of active RAC entries is small the benefit of
the owrung cluster determines their global order. merging should outweigh the potential for contention.

As with memory blocks, a cache block in a processor's cache When the read request reaches the home cluster, it is issued
may also be in one of three states: invalid, shared, and dirty, on that cluster's bus. This causes the directory to look up the
The shared state imphes that there may be other processors status of that memory block, If the block is in an uncached.
caching that location. The dirty state implies that this cache remote or shared-remote state t.he directory controller sends the
contains an exclusive copy of the memory block, and the block data over the reply network to the requesting cluster. It also
has been modified. records the fact that the requesting cluster now has a copy of

The following sections outline the truce primitive operations the memory block. If the block is in the dirty-remote state,
supported by the base DASH coherence protocol: read, read- however, the read request is forwarded to the owning, dirty
exclusive and write-back. We also discuss how the protocol cluster The owning cluster sends out two messages in response
responds to the issues that were brought up in Section 2 and to the read. A message containing the data is sent directly to the
some of the alternative design choices that were .onsidered. We requesting cluster, and a sharing writeback request is sent to the
descrbe only the normal flow for the memory transactions in the home cluster. The sharing writeback request writes the cache
following sections, excepuon cases are covered in section 4.6. block back to memory and also updates the direcsory. The flow

of messages for this case is shown in Figure 4.
4.1 Read Requests As shown in Figure 4, any request not satisfied in the home

cluster is forwarded to the remote cluster that has a dirty copy
Memory read requests are initiated by processor load instruc- of the data. This reduces latency by permitting the dirty clus-
tions. If the location is present in the processor's first-level ter to respond directly to the requesting cluster. In addition,
cache, the cache simply supplies the data. If not present, then a thds forwarding strategy allows the directory controller to si-
cache fill operation must bring the required block into the first- multaneously process many requests (i.e. to be multithreaded)
level cache. A fill operation first attempts to find the cache line without the added complexity of maintaining the state of out-
in the processor's second-level cache, and if unsu:cessful, the standing requests. Serialization is reduced to the time of a sin-
processor issues a read request on the bus. This read request ei- gle intra-cluster bus transaction. The only resource held while
ther completes locally or is signaled to retry while the directory inter-cluster messages are being sent is a single entry in the
board interacts with Lie other clusters to retrieve the required originating cluster's RAC.
cache line. The detailed flow for a read request is given in The downside of the forwarding straegy is that it can result
Figure 7 in the appendix, in additional latency when simultaneous accesses are made to

The protocol rines to minimize latency by using cache-to- the same block. For example, if two read requests from differ-
cache transfers. The local bus can satisfy a remote read if the ent clusters are received close together for a line that is dirty
given line is held in another processor's cache or the remote remote, both will be forarded to the dirty cluster, However,
access cache (RAC). T'he four processor caches together wit'i only the first one will be satisfied since this request will force
the RAC form a five-v, ay set associative (1.25 Mbyte) cluster the dirty cluster to lose ownership by doing a sharing writeback
cache. The effective size of this cache is smaller than a true set and changing its local state to read only. The second request
associative cache because the entries in the caches need not be will not find the dirty data and will be returned with a nega.
distinct. The check for a local copy is initiated by the normal tive acknowledge (NAK) to its originating cluster. This NAK
snooping when the read is issued on the bus. If the cache line will force the cluster to rctry its access. An ltermative to the
is present in the shared state then the data is simply transferred forwarding approach used by our protocol would have been to
over the bus to the requesting processor and no access to the buffer the read request at the home cluster, have the home send
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Figure 4: flow of Read Request to remote memory with direc- Figure 5: Flow of Read-Exclusive Request to remote memory
tory in dirty-remote state. with directory in shared-remote state.

a flush request to the owning Cluster, and then have the home back over the rtply network. In addition, if the block is in the
send the data back to the originating cluster. We did not adopt shared-remote state, each cluster caching the block is sent an
this approach because it would have increased the latency for invalidation request. The requesting cluster receives the data
such reads by adding an extra network and bus transaction. Ad. as before, and is also informed of the numbDer of invalidation
ditionally, it would have required buffers in the directory to hold acknowledge messages to expect. Remnote clusters send inval.
the pending transaction, or blocking subsequent accesses to the idation acknowledge messages to the requesting cluster after
directory until the first request hadl been satisfied. completing their invalidation. As discussed in Section 3.1, the

invalidation acknowledges are needed by the requesting proce~s-
4.2 ead-xclsiveRequstssor to know when the store has been completed with respect to
4.2 ead-xcluive equetsll processors. The RAC entry in the requesting cluster persists

Write operations are initiated by processor store instructions, until all invalidation acknowledges have been received. The re-
Data is written through the first-level caLhe and is buffered in a ceipt of the acknowledges generally occurs after the pro-cessor
fouxr word deep write-buffer. The second-level cache can retire itself has been granted exclusive ownership of the cache line
the write if it ha~s ownership of the Line. Otherwise, a read- and continued execution, Figure 5 depicts this shared-remote
exclusive request is issued to the bus to acquire sole ownership case.
of the Line and retrieve the other words in the cache block. Ob- If the directory indicates a dirty-remote state, then the request
taining ownership does not block the processor directly; only is forwarded to the owntog cluster as in a read request. At the
the write-buffer output is stalled. As in the case of read requests, dirty cluster, the read-exclusive request is fissuedl on the bus.
cache coherence operations begin when the read-exclusive re- This causes the owning processor to invalidate that block from
quest is tssued on the bus. The detailed flow of read-exclusive its cache and to send a message to the requesting cluster grant.
request is given in the appendix in Figure 9 and is summarized ing ownership and supplying the data, In parallel, a request
below. is sent to the home cluster to updat.- ownership of the block.

The flow of a read-exclusive is similar to that of a read re- On recetving this message. the home sends an acknowledg-
quest. Once the requ'st is issued on the bus, it checV.s other ment to the new owning cluster. This extra acknowledgment is
caches at the local clustcx level, If one of those caches has needed because the requesting cluster (the new owning cluster)
that memory block in the dirty state (it is the owner), then that may give up ow-ners ttip (e.g. due to a writeback) even before
cache supplies the data and ownership and invalidates its own the home directory has rs-ceived an owrerslhip change message
copy. If the memory block is not owned by the local cluster, from the previous owner. If titCsc m~qsages reach the home
a request for ownership is sent to the home cluster. As in the out of order the directory will become permanently inconsis-
case of read requests, a RAC entry is allocated to receive the tent. The extra acknowledgment guarantees !hat the new owner
ownership and data, retain ownership until the directory has been updated.

At the home cluster, the read-exclusive request is echoed Performance of the read and w-rite operations is closely re-
on the bus. If the memory block is in an uncached-remote or lated to the speed of the %1PB US and the latency of inter-cluster
shatred-remote state the data and ownership are immediately sent communication. Figure 6 shows the latencies for various mem-
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semantics of release consistency allows the processor to con-
Read Operations tinue after issuing a write operation. The write-buffer withinHIt in 1st Level Cache I pclok-k the processor holds the pending operation, and the write-bufferFill front 2nd Level Cache 12 pIlo-ckFill from Local Cluster 22 iock is allowed to retire the write before the operation has completed

Fill from Remote Cluster 61 pclock with respect to all processors. The processor itself is allowed to

Fill from Dirty Remote, Remote Home 80 pclock continue while the write-buffer and directory controller are corn-

Fill operations fetch 16 byte caute blocks ard erpry pleting the previous operations. Ordering of memory accesses
the %,r7re-buffer before fetching the read-miss cache block is only guaranteed between operations separated by a releasing

Write Operations synchronization operation or an explicit fence operation. Upon
a write-fence (explicit or implicit), all previous read and write

Hit on 2nd bLvel Owned Block 3 IOck operations issued by this processor must have completed with
Owned in Remote Cluster 57 pclock respect to all processors before any additional write operations

Owned in Dirty Remote. Reri.te Home 76 pclock can become visible to other processors.
DASH implements a write fence by blocking a processor's

Write operatn.s oriN stal the Krit'-bier, not the access to its second-level cache and the MPBUS until all reads
"rite delss assume Rle Releas Coarsstencg (I e d and writes it issued before the write fence have completed. This
p*roe dl ssor, hie thefllas i os cistencrid i etyd
no: %astfor remn, ,e r;tilad.res ;,, be acknovledgedi is done by stalling the write-fence (which is mapped to a store

operation) in the processor's write-buffer. Guaranteeing that

Figure 6: al.tercy for vanous memory system operations in preceding reads and writes have been performed without impos-

processor clocks. Each processor clock in the prototype is 40 ing undue processor stalls is the challenge. A first requirement
is that all invalidation operations must be acknowledged. As
illustrated in Figure 5, a write operation to shared data can pro-
ceed after receiving the exclusive reply from the directory, but

ory operations in the D.-6SH prototype assuming no network or the RAC entry associated with this operation peisists until all
bus contention The figure ilustrates the one-to-one relation- of the acknowledges are received by the reply controller (RC).
sh.p between the latency of an operation and its corresponding Each RAC entry is tagged with the processor that is responsible
number of network hops and bus transactions. In DASH, the for this entry and each processor has a dedicated counter in the
network and directory board o,.erhead is roughly equal to the RC which counts the total number of RAC entries in use by that
CPU overhead to initiate a bus transaction. Thus, if an intra- processor. A write fence stalls until the counter for that proces-
cluster bus transaction takes roughly 20 processor clocks then sor is decremented to zero. At this point, the processor has no
an inter-cluster transaction that involves two clusters, (i.e. three outstanding RAC entries, so all of its invalidation acknowledges
bus transactions) takes roughly 60 processor clocks, and a three must have been received.
cluster transaction takes 80 processor clocks. We observe that simply using a per processor counter to keep

track of the number of outstanding invalidations is not sufficient
4.3 Writeback Requests t support release consistency. A simple counter does not allow

the processor cache to distinguish between dirty cache lines
A dirty cache line that is replaced must be written back to that have outstanding invalidates from those that do not. This
memory. If the home of the memor block is the local cluster, results in anothet processor not being able to detect whether
then the data is sirmply written back to matn memory. If the a line returned by a dirty cache has outstanding invalidates.
home cluster is remote, then a message is sent to the remote The requesting processor could then improperly pass through a
hone which updates the main memory and marks the block fence operation. Storing the pending invalidate count on a per
uncached-reniote The flow of a writehack operation is given cache line basis in the RAC, and having the RAC snoop bus
in the appendix in Figure 8. transactions, allows cache lines with pending invalidates to be

distinguished. The RAC forces a reject of remote requests to
4.4 Bus Initiated Cache Transactions such blocks with a NAK reply. Local accesses are allowed, but

the RAC adds the new processor to its entry for the line making
CIIU initiated transactions have been described in the preceding this piocessor also responsible for the original invalidations.
sections. The protocol also includes transitions made by the Write-back requests of a line with outstanding invalidations are
slave caches that are monitoring their respective buses. These blocked by having the RAC take dirty ownership of the cache
trarnsitions are equivalent to those in a nomial snoopy bus proto- block.
col. In particular, a read operation on the bus will cause a dirty In the protocol, invalidation acknowledges are sent to the
cache to supply data and change to a shared state. Dirty data will local cluster that initiated the memory request. An alternative
also be written back to main Menio.r' (or the kAC if remote). A would be for the home cluster to gather the acknowledges, and,
read-exclusive operation on the bus A ill cause all other cached when all have been received, send a message to the requesting
copies of the line to be invalidated Note that when a valid line cluster indicating that the request has been completed. We chose
in the second-level cache is invalidated, the first-level cache is the former because it reduces the waiting time for completion
also invalidated so that the procesior's second-level cache is a of a subsequent fence operation by the requesting cluster and
superset of the first-level cache reduces the potential of a hot spot developing at the memory.

4.5 Support for Memnory Consistenc) 4.6 Exception Conditions

As discussed in section I.1, IDASH I suppioris the rlea.cie consis- The description of the protocol listed above does not cover all of
tency model. Memory s -stern latency is reduced because the the conditions that the actual protocol must address. While enu-
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merating all of the possible exceptions and protocol responses other handles veply messages Reply messages are guaranteed
would require an overly detailed discussion, this section intro- to be consumed at the destination, partly because of their nature
duces most of the exception cases and gives an idea of how the and partly because space for the reply data is preallhxated in the
protocol responds to each exception. RAC. This eliminates the possibility of request-repl) circular

One exception case is that a request forwarded to a dirty dependencies and the associated deadlocks.
cluster may arrive there to find that the dirty cluster no longer However, the protocol also relies on request messages that
owns the data. This may occur if another access had previously generate additional requests. Because of the limited buffer
been forwarded to the dirty cluster and changed the ownership space, this can result in deadlocks due to request-request circu-
of the block, or if the owning cluster performs a writeback. lar dependencies. Fairly large input arid output FIFO's reduce
In these cases, the originating cluster is sent a NAK response the probability of this problem. If it does arise, the directory
and is required to reissue the request. By this time ownership hardware includes a tinte-out mechanism to break the possible
should have stabilized and the request will be satisfied. Note deadlock. If the directory has been blocked for more than the
that the reissue is accomplished by simply releasing the proces. time-out period in attempting to forward a request it will in.
sor's arbitration mask and treating this as a new request instead stead reject the request with a NAK reply message. Once this
of replying with data. deadlock breaking mode is entered enough other requests are

In very pathological cases, for example when ownership for a handled similarly so that any possible deadlock condition that
block is bouncing bzck and forth between two remote clusters, has ansen within the request network can be eliminated. As
a requesting cluster (some third cluster) may receive multiple in cases discussed earlier, this scheme relies on the processor's
NAK's and may eventually time-out and return a bus error. ability to reissue its request upon receiving a NAK.
While this is undesirable, its occurrence is very improbable in
the prototype system and, consequently, we do not provide a 4.8 Error Handling
solution. In larger systems this problem is likely to need a com-
plete answer. One solution would be to implement an additional The final set of exceptions arise in response to error conditions
directory state which signifies that other clusters are queued for in the hardware or protocol. The system includes a number
access. Only the first access for a dirty line would be forwarded of error checks including ECC on main memory, panty on the
while this request and subsequent requests are queued in the di- directory memory, length checking of network messages and
rectory entry. Upon receipt of the next ownership change the inconsistent bus and network message checking. These checks
directory can respond to all of the requests if they are for read are reported to processors through bus errors and a.,oCiatcd
only copies. If some are for exclusive access then ownership error capture registers. Neissork errors and improper requests
can be granted to each in turn on a pseudo-random basis, Thus, are dropped by the receiver of such messages. Depending upon
eventually all requests will be fulfilled. the type of network message that was lost or corrupted. the

Another set of exceptions arise from the multiple paths issuing processor will eventually time-out its originating request
present in the system. In particular, the separate request and or some fence operation which will be blocked wainng for a
reply networks together with their associated input and output RAC entry to be deallocated. TPne tirne-out generates a bus-
FIFO's and bus requesters imply that some messages sent be- error which interrupts the processor. The proesses using the
tween two clusters can be received out of order. The protocol particular memory location are aborted, but low level operating
can handle most of these misorderings because operations are system code can recover from the error if it is not sithin the
acknowledged and out-of-order requests simple receive NAK kernel. The OS can subsequently clean up the state of a ine by
responses. Other cases require more attention. For example, a using back-door paths that allos, direct addressing of the RAC
read reply can be overtaken by an invalidate request attempting and directory memory.
to purge the read copy, This case is handled by the snoop-
ing on the RAC. When the RAC sees an invalidation request
for a pending read, it changes the state of that RAC entry to 5 Sunppemental Operations
invalidated-read-pending. In this state, the RC conservatively 

_O e

assumes that any mad reply is stale and treats the reply as a During the evolution of the DASH protocol, several additional
NAK response, memory operations %ere evaluated. Some of these operations

are included in the DASH prototype, while others %here not

4.7 Deadlock included due to hardware constraints or a lack of evidence that
the extension would provide significant performance gains,

In the DASH prototype, deadlocks are eliminated through a The first major extension incorporated into the DASH pro-
combination of hardware and protocol features. At the hard- tocol was sapport for synchrorur.ation operations The shanng
ware level, DASH consisLs of two mesh networks, each of characte'istics of synchronization objects are often quite differ-
which guarantees point-to-point delivery of messages without ent from those of normal datam Lsxks, barriers, and semaphores
deadlocks. However, this by itself is not sufficient to prevent can be highly contended. Using the normal directory protocol
deadlocks because th'. consumption of an incorring message for synchronization objects can lead to hot spots. For esarmple,
may require the generation of another outgoing message. This when a highly contended lock is released, all processor caches
can result in circular dependencies between the limited buffers containing the lock are invalidated; this invalidation results in
present in two or more nodes and cause deadlock, the waiting processors rushing to grab the lock DASH pro-

To address this problem, the protocol divides all messages vides special queue-based lock primiuves that use the directory
into request messages (e.g. read and read-exclusive requests and memory to keep track of clusters waiting for a lock. Using the
invalidation requests) and reply messages (e.g. read and read- directory memory is natural since it is already set up to track
exclusive replies and invalidation acknowledges). Furthermore, queued ciusters, and the directory is normally accesed in read-
one mesh is dedicated to servicing request messages while the modify-write cycles that match the atomic update necessary for
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locks. An unlock of a queue-based lock while clusters are wait- each bit represents a region of processors the amount of traffic
ing results in a grant of the lock being sent to one of the waiting generated by such overflows can be greatly reduced relative to
clusters. This grant allows the cluster to obtain the lock without a broadcast.
any further network messages, Thus, queue-based locks reduce Other schemes to scale the directory rely on restructuring of
the hot spotting generated by contended locks and reduce the directory storage. Possible solutions include allowing point-
latency between an unlock operation and subsequent acquisi- ers to be shared between directory entries, or using a cache
tion of the lock. This and other synchronization primitives ate of directory entries to supplement or replace the normal direc-
discussed in detail in [17]. tory (18, 13]. A directory structured as a cache need not have a

Another set of operations included in the prototype help hide complete backing memory since replaced directory entries can
the latency of memory operations. Normally, when a read is simply invalidate their associated cache entries (similar to how
issued the processor is stalled until the data comes back. With multi-level caches maintain their inclusion property). Recent
very fast processors, this latency can be tens to hundreds of studies (13] have shown that such sparse-directories can main.
processor cycles. Support for some form of prefetch can clearly tain a constant overhead of directory memory compared with a
help. DASH supports both read prefetch and read-exclusive full-bit vector when the number of processors grows from 64
prefetch operations (17]. These operations cause the directory to 1024. A sparse directory using limited pointers and a coarse
contrcller to send out a read or read-exclusive request for the vector only increases the total traffic by only 10-20% and should
data, but do not block the processor. Thus, the processor is able have minimal impact on processor performance. Furthermore,
to overlap the fetching of the data with useful work. When the such directory structures require only small changes to the co-
processor is ready to use the prefetched data, it issues a normal herence protocol given here.
read or read exclusive request. By this time the data will either
be in the RAC or the prefetch will be outstanding, in which case
the normal read or read-exclusive is merged with the prefetch. 7 Validation of the Protocol
In either case, the latency for the data will be reduced. Ideally,
we would have liked to place the prefetched data directly in the Validation of the DASH protocol presents a major challenge.
requesting processor's cache instead of the RAC, but that would Each cluster in DASH contains a complex directory controller
have required significant modifications to the existing processor with a large amount of state. This state coupled with the dis-
boards. tributed narire of the DASH protocol results in an enormous

There are some v.fiables for which a write-update coherence number of possible interactions between the controllers. Writ-

protocol is more appropriate than the DASH write-invalidate ing a test suite that exercises all possible interactions in rea-
protocol [31. The prototype system provides for a single word sonable time seems intractable. Therefore, we are using two
update write primitive which updates memory and all the caches less exhaustive testing methods. Both these methods rely on
currendy holding the word. Since exclusive ownership is not the software simulator of DASH that we have developed.
required, the producer's write buffer can retire the write as soon The simulator consists of two tightly coupled components: a
as it has been issued on the bus. Update-writes zre especially low-level DASH system simulator that incorporates the coher-
useful for event synchronization. The producer of an event can ence protocol, and simulates the processor caches, buses, and
directly update the value cached by the waiting processor re- interconnection network at a very fine level of detail; and Tango

ducing the latency and traffic that would result if the value was (11], a high-level functional simulator that models the proces-
invalidated. This primitive is especially useful in implementing sors and executes parallel programs. Tango simulates parallel
barriers, as an update-write can be used by the last processor processing on a unlprocessor while the DASH simulator pro-
entering the barrier to release all waiting processors. Update op. vides detailed timing about latency of memory references. Be-
eratons conform to the release consistency memory model, but cause of the tight coupling between the two parts, our simulator
require explicit fence operations when used for synchronization closely models the DASH machine.
purposes. Our firm scheme for testing the protocol consists of running

existing parallel programs for which the results are known and
comparing the output with that from the DASH simulator. The

6 Scalability of the DASH Directory drawback of using parallel programs to check the protocol is
that they use the mermory system and synchronization features

The DASH directory scheme currently uses a full bit-vector in "well-behaved" ways, For example, a well-written parallel
to identify the remote clusters caching a memory block. While program will net release a lock that is already free, and parallel
this is reasonable for the DASH prototype, it does not scale well prog:ams usual]- don't modify shared variables outside of a
since the amount of directory memory required is the propor- critical section. As a result, parallel applications do not test a
tional to the product of the main memory size and the number of large set of possible interactions.
processors in the system. We are currently investigating a van- To get at the more pathological interactions, our second
ety of solutions which limit the overhead of directory memory. method relies on test scripts. These scripts can be written to
The most straightforward modification is the use of a limited provide a frne level of control over the protocol transitions and
number of pointers per directory entry. Each directory pointer to be particularly demanding of the protocol. While writing an
holds the cluster number of a cluster currently caching the given exhaustive set of such test scripts is not feasible, we hope to
line. In any limited pointer scheme some mechanism must exist achieve reasonable test coverage with a smaller set of scripts
to handle cache blocks that are cached by more processors then by introducing randomness into the execution of the scripts.
there are pointers. A very simple scheme resorts to a broadcast The randomness idea used is an extension of the Berkeley
in these cases [1]. Better results can be obtained if the pointer Random Case Generation (RCG) technique (22] used to verify
storage memory reverts to a bit vector when pointer overflow the SPUR cache controller design. Our method, called Intelli-
occurs. Of course, a complete bit vector is not possible, but if gent Case Generation (ICG), is described in detail in [14]. Each
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script is a self-contained test sequence which executes a iumber must support some form of limited directory information. On
of memory operations on a set of processors, Each scnpt con. the other hand, the SCI director), memory would normally em-
sists of some initialization, a set of test operations, and a check PLoy the same SRAM technology used by the processor caches
for proper results, Like RCG, multiple, independent scnpt.s run while the DASH directory is implemented in main memory
simultaneously and interact in two ways. First, a processor ran- DRAM technology. Another feature of SCI is that it guar-
domly chooses which of the multiple active scripts it is going antees forward progress in all cases, including the pathological
to pick its next action from. Therefore, execution of the same "live-lock" case alluded to in section 4.6.
set of scripts will be interleaved in time differently upon each The primary disadvantage of the SCI scheme is that the distri-
run. Second, while each script uses unique memory locations, bution of the individual directory entries increases the complex-
these locatiens may be in the same cache line. Scripts interact ity and latency of the directory protocol, since additional direc-
by changing the cache state of cache Lines used by other scripts. tory update messages must be s.ent between processor caches.

ICG extends RCG in three ways. First, instead of simple two For example, on a write to a shared block cached by N + I
step scripts (a write followed by a read), ICG supports multi. processors (including the r'iting processor), the writer must
step scripts in which some steps ar executed in series and perform the following actions: ýi) detach itself from the sharing
some are allowed to execute in parallel. Second, ICG provides list; (ii) interrogate memory to determine the head of the shar-
a finer level of control over which processors execute which ing list; (iii) acquire head status from the current head; and (iv)
steps of a script and introduces randomness into the assignment serially purge the other processor caches by issing invalidation
process. Fnally, ICG allows for a more flexible assignment of requests and receiving replies indicating the next processor in
test addresses so that particular scripts do not have to be written the list. Altogether, this anournts to 2.'% -- 8 messages including
to interact. Using ICG to dynamically assign addresses results .N serial directory lookups. In contrast, DASH can locate all
in different scripts interacting at different times during a run, sharing processors in a single directory lookup and invalidation
and results in the sanme script using various combinatioms of messages are serialized only by the network Lransmission rate.
local and remote memory. Likewise, many read misses in SCI require more inter-node

Of course, the hardware itself will also serve as a verifica- communication. For example. if a block is currently cached,
tion tool. The hardware can run both parallel programs and processing a read miss requires four messages since only the
test scripts. While debugging protocol errors on the hardware head can supply the cache block. Furthermore, if a miss is
will be difficult, the sheer number of cycles executed will be a replacing a valid block in the processor's cache, the replaced
demanding test of the protocol. block must be detached from its sharing list.

Recently, the SCI working comminee has proposed a number
of extensions to the base protocol that address some of thesc

8 Comparison with Scalable Coherent shortcomings. In particular, the committee has proposed ad-

Interface Protocol ditonal directory pointers that allow shanng lists to become
sharing trees, the support for request forwarding, and the use of

Several protocols that provide for distributed directory-based a clean cached state. While these extensions reduce the differ-
cache coherence have been proposed (15, 21]. The majority of ences between the two protocols, they also add complexity Thethese protocols have not been defined in enough d1tail to do fundamental question is what set of features leads to better per-

these protocolsivehavo not beenedefined iintenoughgn oftatheto"do
a reasonable comparison with the DASH protocol. One excep- fomiance at a given conpiexit, evel. As in the design of other
don is the IEEE P1596 - Scalable Coherent Interface (SCI) [12). hardware systems, this r,-quires a careful balance between opU-
While still evolving, SCI has been documented in sufficient de- mizing the performance of common operations without adding
tail to make a comparison possible. SCI differs from DASH, undue complexity for uncommon ones. The lack of good statis-
however, in that it is only an interface standard, not a complete tics on scalable shared memory machines, however, makes the
system design. SCI only specifies the interfaces that each pro- identification of the common cases difficult Thus, a complete
cessor should implement, leaving open the actual node design comparison of the protocols is likely to require actual imple-
and exact interconnection network, mentations of both designs and much more experience with this

At the system level, a typical SCI system would be similar class of machines.
to DASH with each processing node containing a processor, a
section of main memory. and an interface to the interconnec- 9 Summary and Status
don -r.ork. Both systems rely on coherent caches maintained
by distributed directories and distributed memories to provide Distributed directory-based coherence protocols such as the
scalable memory bandwidth. The major difference lies in how DASI protocol allow for the scalability of shared-memory mul-
and where the directory information is m aintained, In SCI, thearidwhere thedieory i nfodistr armaiong ist maintained, In SQ. the utiprocessors with cohere-tt caches. The cost of scalability is the
directory is a distributed sharing list maintained by the prces- added complexity of directory ba-ed schemes compared with
sor caches themselves. For example, if processors A, B, and existing snoopy, bus-based coherence protocols. The complex-
C are caching some location, then the cache entries storing this ity arises primarily from the lack of a single senalization point
location will form a dout-y-linked list. At main memory. only within the system and the lack of atomic operations Additional
a pointer to the processor at the head of ;he linked list is main-tained. In contrast, DASH places all the directory information complexity stems simply from the larger set of components that
with main memory, interact to execute the protocol and the deeper hierarchy withinThe main advantage of the SCI mheme over DASH is that the memory system.

T'nemai adantae o th SCIschme ver ASHis hat Minimizing memory latency is of paramount importance inthe amount of directory pointer storage grows naturally with the sisinit. Sprfo r coeent cachsust irte innumber of processors in the system. In DASH, the maximum scalable sys~em.!. Support for coherent caches is the first step in
number of processors insthe system. f id DASH, or the m nu reducing latency, but the memory system must also be optimized
number of processors must be fixed beforehand, or the system towards this goal. The DASH protocol attempts to minimize la-
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coheicrnce piroocel is a major challenge. We feel that verifica- nication networks. In Stanford Conference on Advanced
tion throcgh the use of test scripts and extensive random testing Research in VLSI, 1987.
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Abstract

This paper presents a theory that unifies many existing loop transformations, Lrncluding loop inter-
change or permutation, skewing, reversal, tiling, and combinations of these elementary transforma:ions.
This theory provides the foundation for solving an open question in compilation for parallel machines:
Which loop transformations and, in what order, should be applied to achieve a particular goal, such as
maximizing parallelism or data 1" .' y. This paper presents an efficient loop transformation algorithm
based on this theory to maximi7C .he degree of parallelism in a loop nest.

1 Introduction

Loop transformations, such as loop interchange, reversal, skewing and tiling (or subblocking)[2, 4, 181
have been showi, to be useful for two important goals: parallelism and efficient use of the memory
hierarchy. Previous work on loop trdnsformations focused on the application of individual transformations:
when it is lcgal to apply a transformation, and if the transformation directly contributes to a particular
goal. It remains an open question as to how to combine these transformations to optimize general loop
nests for a particular goal. This paper introduces a theory of loop transformations that answers this
question.

A technique commonly used in today's parallelizing compilers is to decide a priori the order in
which the compiler should attempt to apply transformations. This technique is inadequate because the
ellectiveness of a given transformation often depends on the future transformations that can be applied.
Another proposed technique is to "generate and test", that is, to apply all different possible combinations
of transformations. This "generate and test" approach is expensive. Diflerently transformed versions
of the same program may trivially have the same behavior and so need not be explored, For example,
when vectorizing, the order of the outer loops is not significant. More importantly, generate and test
approaches cannot search the entire space of transformations that have potentially infinite instantiations.
Loop skewing is such a transformation, since a wavefront can travel in an infinite number of different
directions.

For loops whose data dependences are distance vectors, a more rigorous mathematical approach has
been proposed. In this approach, loop interchange, reversal, and skewing transformations are unified as
linear transformations in the iteration space. This mathematical formulation of a loop has been used in the
study of generating systolic arrays and tiling[6, 7, 10, 11, 14, 15]. The restriction that data dependences
must be distance vectors excludes loops that contain any "serializing" loops. That is, in this notation,
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an n-dimensional iteration space trivially can be transformed to produce n - I parallel loops. We are
interested in representing general loop nests and transforming the loops to maximize the number of
parallel loops.

Our approach combines the rigor of the iteration space approach with the general program domain
of the vectorizing and concurrentizing compilers. Our dependence vectors can incorporate both distance
and direction information. The various transformations, interchange, reversal and skewing are unified as
linear transformations. Compound transformations are just another linear transformation. This unification
provides a general condition to determine if the code obtained via a compound transformation is legal,
as opposed to a specific test for each individual elementary transformation. This makes it possible to
search through the transformation space efficiently to achieve a given goal. Moreover, the relationships
and interactions between different transformations can be analyzed in this unified model. Similarly, this
model supports the derivation of the new loop bounds directly after a compound transformation. If loop
bounds were derived for every transformation, the final expressions derived may be more complex than
necessary.

Using this notation, we have developed algorithms for improving the parallelism and locality of a
loop nest via loop transformations. Our parallelizing algorithm maximizes the degree of parallelism,
that is, the number of parallel loops, within a loop nest. By finding the maximum number of parallel
loops, multiple consecutive loops can be coalesced to form a single loop with all the iterations; this
facilitates load balancing and reduces synchronization overhead. The different degrees of parallelism
can be exploited directly by processors with different levels of parallelism, such as a muliprocessor
with supcrscalar nodes. Moreover, some of the loops may contain a small number of loop iterations.
Parallelizing only one loop may not fully exploit all the parallelism in the machine. The algorithm can
generate coarse-grain and/or fine-grain parallelism; the former is useful in multiprocessor organizations
and the latter is useful for vector machines and superscalar machines, machines that can execute multiple
instructions per cycle. It can generate code for machines that can use multiple levels of parallelism, such
as a multiprocessor with vector nodes.

We have also applied our representation of transformations successfully to the problem of data locality.
All modem machine organizations, including uniprocessors, employ a memory hierarchy to speed up data
accesses; the memory hierarchy typically consists of registers, caches, primary memory and secondary

memory. To use this memory hierarchy efficiently, our locality optimization seeks to maximize the reuse
of data that has been recently accessed. As the processor speed improves and the gap between processor
and memory speeds widens, data locality becomes more important. Even with very simple machine
models (for example, uniprocessors with data caches), complex compound loop transformations may be
necessary [8, 9, 13]. The consideration of data locality makes it more important to be able to combine
primitive loop transformations in a systematic manner.

The loop transformation algorithm has been implemented in our Stanford University parallelizing
compiler. The implementation has taken only about two man-months, demonstrating that the implemen-
tation is made simple by the theory.

This paper introduces our model of loop dependences and transformations. We describe how the
model facilitates the appl;cation of compound transformation, using parallelism as out target. The model
is important in that it enables the choice of an optimal transformation without an exhaustive search. Here
we will only present the parallelization algorithm; the proof that it finds the optimal transformation[16]
is outside the scope of this paper. The derivation of the optimal compound transformation consists of
two steps. The first step puts the loops into a canonical form, and the second step tailors it to specific

2



architectures. While the first step can be expensive in the worst case, we have developed an algorithm
that is feasible in practice. We apply a cheaper technique to handle as many loops as possible, and use
the more general and expensive technique only on the remaining loops. We expect to find the optimal
transformation in O(n 3d) time for most programs, where n is the depth of the loop nests and d is the
number of dependence vectors, The second step of specializing the code for different granularities of
parallelism is straightforward and cheap. After deciding on the compound transformation to apply, the
code including the loop bounds is then modified.

The organization of the paper is to first present the representation of the loop nests and the modeling
of loop transformations, After establishing the notation, we illustrate the algorithm of paraUelization by
stepping through a simple example and showing the output code for different machine organizations.
Finally, we describe a method for deriving the bounds of a loop after a compound transformation.

2 Representation

2.1 Program Representation

Our approach is applicable to perfectly nested loop nests; we assume that all optimizations have been
applied to create perfectly loop nests whenever possible [1]. The upper and lower loop bounds must be
linear expressions of the loop indices and the loops are normaiizd to have unit step sizes. In our model, a
loop nest of depth n corresponds to a finite convex polyhedron of iteration space Z 1, bounded by the loop
bounds. Each iteration in the loop corresponds to a node in the polyhedron, and is identified by its index
vector P = (pl,p2,... ,p.); pi is the loop index of the i loop in the nest, counting from the outermost to
innermost loop. In the sequential program, the iterations are therefore executed in lexicographic order of
their index vectors.

The scheduling constraints of the loop are represented as dependence vectors. The only dependences
of interest are loop carried dependences, and not loop independent dependences. It is not necessary to
classify the different dependence types such as control, anti- or output dependence, nor is the identity of
the related memory accesses of any significance.

A dependence vector in an n-nested loop is denoted by a vector (dj, d2 ,.... d,,). Each component
d, is a range of integers, represented by

(d', dý'],where d` E Z U {-oc}, d" E Z U {oo} and d" < d".

A single dependence vector represents a set of distance vectors, known as the distance vector set:

E(j) = {e , -- ,)lee E Z^ < e, <dý'}.

Each distance vector defines a set of edges on pairs of nodes in the iteration space. We say that an
edge (pf, A) exists if and only if 3e E C(d) for some dependence vector d, such that f2 = p1 + F. The
dependence vectors thus define a partial order on the nodes in the iteration space, and any topological
ordering on the graph is a legal execution order, as all dependences in the loop are satisfied.

This notation allows us to represent both direction [3, 171 and distance information in a uniform
notation. For example, the Wolfe direction vector ' < ' would be represented in our notation as d" = I
and d' = oo, or [1, ao] for short. If a dependence has a constant distance 6, then the dependence is
represented as [6, b], and we use the shorthand 6 to represent that distance when the context is clear.
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Finite ranges of distance components are represented by separate dependence vectors; that is, if d•' $ d",
then d" = -oo or d' =- oo or both.

The arithmetic and comparison operators over the domain of components are defined in a straightfor-
ward way to give useful meanings. For example, arithmetic operators are defined so that 2 + [-3, o] =

[- 1, ool. We also utilize the multiplication of a distance by a scalar when taking dot products. We use
the straightforward definition that

a[ab -- f [sa, sb], if a 0
k [sb, sa], otherwise

and s • oo is 00 for positive a, 0 if s is 0, and -oo for negative s, and likewise for a factor times -oW.
These definitions of addition and multiplication are conservative in that

,1 E E(WI) and 02 E F(j 2) => f(,61,F2) E E(1(ji, j2))

where f is a function that performs a combination of multiplications and additions on its operands. The
converse, that F E (f1(i, j2)) =., 30 ( j) A e2 ( 2) f:F, 2 =i7

is not necessarily true unless da and d2 are themselves distance vectors.
A component d is positive, written d > 0, if its minimum d A' is a positive integer. It is non-negative,

written d > 0, if its minimum is non-negative. Likewise, d is negative or non-positive if its maximum
d" is negative or non-positive respectively. We use the notation ' + ' as shorthand for [1,0], '-, as
shorthand for [-oo,-1], and '*' as shorthand for [-oo,oo].

Since the nodes are initially executed in lexicographic order, the scheduling constraints can be captured
by a set of lexicographically positive dependence vectors, A dependence vector d is lexicographically
positive, written d >- c5, if 3i : (di > 0 and Vj < i : d, >_ 0). A dependence vector d is lexicographically
non-negative, written 9 L (5, if it is lexicographically positive or its components are all non-negative. A
zero vector is one with all components equal to 0, written 0.

The procedure for extracting data dependence for this representation is similar to those used in previous
vectorizing and parallelizing compilers. The only difference is that we require the data dependences
of the original programs be represented as lexicographically positive data dependence vectors. For
example:

for i:=Oto ndo
for j:= O to ndo

b := g(b);

The dependence vectors are {(0, '+'), ('+', ',')}. The lexicographical positive property of the dependences
is cricial in simplifying the modeling of loop transformations.

2.2 Transformation Representation

The scope of loop transformations addressed in this paper is restricted to transformations that manipulate
entire iterations and reorganize them within a loop nest. A loop transformation is defined by two map-
ping functions. The first is a one-to-one and onto mapping between a node in the convex polyhedron
representing the original loop nest and a node in another convex polyhedron in an iteration space of
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possibly differcnt dimensions. The second function maps the original set of dependence vectors, such
that if a distance vector exists between a pair of nodes in the original loop, one also exists between the
corresponding nodes in the transformed loop. We note that there may not be a one-to-one correspon-
dence between the dependence vectors of the two loops because infinite sets of distance vectors can be
represented only along the basis of the iteration space. This notation is chosen because it is efficient and
it captures most of the dependences found in real programs. We say that a transformation is valid if the
transformed dependence edges are acyclic. Traditionally, we say that it is legal to apply a transformation
to a loop nes. if the transformed code can be executed sequentially, or in lexicographic order of the
iteration space. We observe that if nodes in the transformed code are executed in lexicographic order, all
data dependences are satisfied if the transformed dependence vectors are lexicographically positive. This
observation leaus to a general definition of a legal transformation.

Defer .tion 2.1 -ansformation is legal if the transformed dependence vectors are all lexicograph-
ical '; positive.

Malay I the loop transformations used in vectorizing and parallelizing compilers can be gei. ralized
as linear transformations; these include permutation, reversal and skewing. An important non-linear loop
transformation is tiling.

2.2.1 Linear Transfor--nations

A linear transformation T, where T is a non-singular, unimodular matrix, maps iteration j to iteration Ti;
and dependcncc vector d to iteration Td. T is unimodular so that T'- maps the transformed iteration p,
back to integral points in the original iteration space f; - T-t1 ý. We consider only n x n matrices, where
n is the nest depth. Three of the common loop transformations, permutation, reversal and skewing, are
elementary transformations.

a Permutation: A permutation a on a loop nest transforms iteration (pI,..- ,Pn) to (Pai -... ,PaJ).
This transformation can be expressed in matrix form as I,. the n x n identity matrix I with rows
permuted by Y'.

e Reversal: Reversal of loop * is represented by the identity matrix, but with the ith diagonal element
equal to -1 rather than 1.

• Skewing: Skewing loop 1, by an integer factor f with respect to loop 1, [18] maps iteration

(PI,.. , -IPi-lI,5A5Pi+ .. ,Pj-I, Pj, Pj+ I . .,Pn)

to
(Pl ..... P I-,Pi,P4 ,- .... ,Pj-IP + fPi,Pj+- .I P;).

The transformation matrix that produces skewing is the identity matrix, but with the element t ij
equal to f rather than zero. Since i < j, T must be lower triangular.

A compound Lransformation can be synthesized from a sequence of primitives, and the effect of the
transformation is represented by the products of the various transformation matrices for each primitive
transformation. Suchi a transformation is always unimodular. If the computation is to be executed
sequentially in lexicog-aphic order, then it must be the case that Td >- 0. This observation allows ,us to
devise a simple legality test for general linear transformations.

5



Theorem 2.1 (Linear Transformation Test). Let D be the set of dependence vectors of a computation.
A linear transformation T is legal if T is non-singular and unimodular, and if V d E D : Td >'- 0.

The proof is a simple consequence of the definition of legal and that if d E D then F E C(d) -- TF >- 6.
Since our arithmetic operators are only conservative for general dependence vectors, it is the case that

SE D then T-I(Td ) = a only under the two comm on cases stated in Theorem 2.2.
Theorem 2.2 Let D be the set of dependence vectors qf a computation. Suppose either of the following

is true.

1. all d E D are distance vectors, or

2. the linear transformation T can be synthesized exclusively from a combination of permutation and
loop reversals.

Then the linear transformation T is legal if and only ifV d E D : Td >- 0.

As an example, let us consider the following code:

for i := 1 to n do
forj:=l ton do

a[ij] := f(a[i,jhla[i + 1,j - 11);
end for

e--..•, or

This cde has the dependence (1,_-). Loop interchange is represented by T = mapping1 0 mapn

iteration (i,j) to (j, i). However, T(l,-1) is (-1, 1) which is lexicographically negative, rendering loop

interchange illegal on this loop. On the other hand, the transformation represented by T' = [-1 -1]

is legal. Note that 0 = 1 so the legal transformation can be considered an

interchange followed by a reversal of the outermost loop.
We say that a set of adjacent loops i through j isfully permutable if it is legal to reorder the loops in

all possible permutations. Full permutability is an important property that is exploited by transformations
for both parallelism and data locality.

Theorem 2.3 (Full Pcrmutability Test.) Loops i through j of a legal computation with dependence
vectors D are fully permutable if

vd G D : ((dI_....d,_1) >,- 6V (Vi < k <_ j : di,• > 0))

2.2.2 Tiling

Tiling 117] is not a linear transformation. When we tile loops i, ... j by sizes b,,... b3, the iteration
space gains j - i + 1 new dirnensions, and the iteration

(Pl.... Pi-I, Pi -- , .Pj, Pi+1,.. 6Pn)
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is mapped to
(Pl . .,I, Pt-l ,o ... PjP',.. ,P•:,Pj+l ". - ,-Pn)

where P1k = lpk/bkj, and Ilk = Pk mod bk, for each i < k < j.
Define the function

0 if d 0

s(d) = { +' if d $0 and d non-negative
'-' if d 0 and d non-positive
¼' otherwise.

A dependence vector (dj,... , dn) is transformed into up to 2ji+2 new vectors of the form

( , ..I.. dn),

where for each i < k < j, either dk = s(dk) and d" = ',' or d. = 0 and d" = dk, except that if dk = 0
then d' = 0 and d" = 0.

From examination of the above, it is clear that if loops i through j of a legal computation are fully
permutable, then they are also tilable. Since the resulting dependence vectors are independent of the size
of the tile, it is not necessary to determine that size at loop transformation time.

3 The Parallelizing Algorithm

Iterations of a loop can execute in parallel if and only if there are no dependences carried by that loop
Suppose the loop nest (Pl .... p,,) can be executed correctly in lexicographic order. The loop pi of a
legal sequential loop nest is parallelizable if and only if for all dependence vectors (dl,... di,.1) >- 0 or
d, = 0. Such a loop is called a DOALL loop. To maximize the degree of parallelism is to transform the
loop nest to maximize the number of loops that satisfy this property.

We divide the problem of parallelization into two parts. We first transform the original loop nest into
nests of largest fully permutable loop nests. This is the canonical form from which maximum degrees
of coarse and fine grain parallelism can be obtained. Then different techniques are applied to obtain
the granularities of parallelism appropriate for the targe! machine. We illustrate this algorithm using the
following example:

for i := I to n do
for j I to n do

for k := I to n do
(aji, k],b[i~j,k]) := f(afilkj, a[i+ l,k-l], b[idk], bfij, k-]]);

The loop body above is represented by a cube in a three-dimensional iteration space with sides of length
n. Discarding (0,0,0), the dependence vectors are,

D

None of the three loops in the source program can be parallelized as it stands; however, there is one
degree of parallelism that can be exploited at either a coarse or fine grain level.

In the description below, we will show the code resulted from each step of the transformation process.
In reality, code is generated once only at the end of the entire algorithm.
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3.1 Canonical Form

A loop is in canonical form for parallelization if it contains the maximally outermost fully permutable
loops under linear transformations. Once in canonical form, the loops can be translated mechanically to
suit a particular parallel architecture.

For the example above, the algorithm permutes the j and k loops, and skews the k loop with respect to
loop i by a factor of 1, resulting in the code below:

for i := I to n do
for k := i+1 to i+n do

for j:= I to n do
(afi,k-i],b[i, k-i]) := f(a[i~k-ij, a[i+ lk-i-l l, b[idjk-i], bfijk4-i-l );

The transformation matrix T and the transformed dependences D are

[10 0[ 1 001 [1001
T I 1 0 0 0 1 1 0 1

0 0 1 0 1 0 0 1 0

and
D = {(0,0,'+'),(1,0,'.'),(0, 1,0)}.

The transformation is legal since the dependences remain lexicographically positive. The first two loops
form one set of fully permutable loop nest, since intercnanging loops i and j leaves the dependences
lexicographically positive. The loop k is in a (degenerate) set of permutable loops by itself.

We will briefly outline the algorithm that is used in transforming the code into canonical form[16].
The algorithm constructs the final set of loops incrementally starting with the outermost subnest and
working inwards. The same procedure of finding the currently outermost, largest fully permutable loop
nest is applied recursively. For each subnest, the algorithm adds loops to it one at 1 time. A loop may
first be reversed and/or skewed with respect to outer loops before it can be permuted to be included into
the current subnest. This permute-reverse-skew does not always deliver the optimal result. However, it is
optimal in common cases such as when the nest contains less than four loops, or when all the dependences
in the original program are distance vectors. In those cases where this algorithm cannot order all the
loop, we apply general 2-D transformations[14, 151 on pairs of loops to improve parallelism. With this
transformation, our algorithm is optimal for loops nests of depth four or less in O(n 3d) where n is the
loop nest depth and d is the number of dependences[16].

3.2 Targeting for Specific Architectures

In the following, we first show that the loops in the canonical format can be trivially transformed to
give coarsest granularity of parallelism. We then show these loops can be transformed to give the same
dcgree of fine-grain parallelism, suitable for superscalar and VLIW architectures. We then return to the
multiprocessor architecture, and show how the same degree of parallelism can be obtained via lower
synchronization cost, and how both fine- and coarse-grain parallelism can be produced.
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3.2.1 Coarse Grain Parallelism

A nest of n fully permutable loops can be transformed to code containing at least n - 1 degrees of
parallelism [11]. In the degenerate case when no dependences are carried by these n loops, the degree
of parallelism is n. Otherwise, n - I loops can be obtained by skewing the innermost loop in the fully
permutable nest by each of the other loops and moving the innermost loop to the outermost position.
For example, the two-loop fully permutable set in the example above can be transformed to provide one
level of parallelism:

for k := 3 to 3*n do
doall i := max(], [(k-n)/2g) to min(n, [(k-1)/2J) do

for j I to n do
(afi,k-2*ij, b[ijdk--2*i1) := f(ati~k-2*i], afi+l,k-2*i-l], b[ijk-2*i], bfid, k-2*i-lj);

The transformation matrix T for this phase of transformation, and the transformed dependences D are

T= 1 0 0 1 1 0 = 1 0 0

0 0 1 j 0 0 1 0 0 1

and
D =

Applying this skew and interchange transformation to all the fully permutable loop nests will produce
a loop nest with the maximum degree of parallelism. Moreover, the parallelism is contained in the
outermost possible loops, and thus of the coarsest granularity possible[16].

3.2.2 Fine Grain Parallelism

If the target is a superscalar or VLIW machine, it is desirable that the parallel loop be innermost. If loop mn
is a parallel loop and m < n, then loop i can be permuted into the innermost loop via the transformation
1, where a = 1 ... mm- 1,m+ 1,..,n,m. It is obvious that originally lcxicographically positive
dependences remain so if loop m is a parallel loop, Thus if there is a DOALL anywhere in the loop
nest, we can create fine-grain parallelism for a machine that can use it. In fact, any number of DOALL
loops can be permuted to be inner loops. This may be useful if code scheduling techniques such as
software pipelining[ 12] are used. The overhead of starting and finishing a parallel loop is further reduced
by coalescing the multiple DOALL loops. Since the transformation in Section 3.2.1 creates the largest
possible number of DOALL loops, the maximum degree of fine-grain parallelism can be obtained by
simply moving these DOALL loops innermost.

3.2.3 Reducing Global Barriers

Whenever a DOALL loop is nested within a non-DOALL loop, all processors must be synchronized
at the end of each DOALL loop with a barrier. We can reduce the synchronization cost by tiling [17].
In the following, we show two variations.

After transforming the code to obtain the outermost fully-permutable lop nests, we do not skew
and permute as suggested in Section 3.2.1. Instead, starting with the canonical form of the nest from
Section 3.1, we tile the outermost fully-permutable nest. Using our simple example again, the tiled code
become.s:
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Figure 1: Order of DOALLs in tiled 2-dimensional iteration space

for ii:= tornby Bdo
for kk :ii+ to ii+n by B do

for i ii to min(ii+B, n) do
for k := max(lk,i+1) to min(kk+B, n) do

for j:= I to n do
(a[i,k-i],b[iL, k-i]) := f(a[i,k-i], a[i+l,k-i-I], b[ij,k-i], b[if, k-i-)]);

The outer loop nests obtained by tiling (ii and kk in the example) can be skewed and permuted to run in
parallel just as the original loops. The advantage is that the synchronization cost is reduced by the block
size. The i and k dimensions are plotted in Figure 1. Tiles are numbered by the index of their outer
loops so that tiles with the same number are executed in parallel. Tiles numbered n cannot execute until
all those numbered n - I have executed.

Tiling has two other advantages. First, within each tile, fine-grain parallelism can easily be obtained
by skewing the loops within the tile and moving the DOALL loop innermost. Second, tiling can improve
data locality if there is data reuse across several loops [8].

To further reduce the synchronization cost, we can apply the concept of a DOACROSS loop to
the tile level [5] [17]. After tiling, instead of skewing the loops statically to form DOALL loops, the
computation is allowed to skew dynamically by explicit synchronization between data dependent tiles.
In the DOALL loop approach , tiles of each level must be completed before the processors may go on to
the next, requiring a global barrier synchronization. In the DOACROSS model, each tile can potentially
execute as soon as it is legal to do so. That is, referring to Figure 1, those numbered n can execute
as soon as their neighbors that are numbered n - I have executed. This ordering can be enforced by
local synchronization. Furthermore, different parts of the wavefront may proceed at different rates as
determined dynamically by the execution times of the different tiles. In contrast, the machine must wait
for the slowest processor at every level with the DOALL method.

3.3 Summary

We have outlined our two-step algorithm in fmding parallelism for the different mnachines. The first is
to transform the code into nests of maximal fully permutable loop nests. The second is to tailor the
code to specific architecures. The step of transforming the loop nests into nests of fully permutable
loops can be quite expensive, whereas the transformation of targeting to different machine architectures
is straightforward.
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4 Determining Loop Bounds

In this section we present a method to determine the loop bounds after a series of skews, permutations,
reversals, general two dimensional transformations and tilings.

4.1 Scope

The class of loops that the loop bound calculation can handle is of the form

for I, := max(LL,...) to min(U, U;,...) do

where

Is= + E l k'k ) /Ikt,

u . = + k , ,I k ) iz -ij

and al 1  ,k and uk are known constants, except possibly for i1 and v,0, which must still be invariant
in the loop nest. (If a ceiling occurs where we need a floor it is a simple matter to adjust 10 and ul 0
and replace the ceiling with the floor, and likewise if a floor occurs where we need a ceiling.) If any
loop increments are not one, then they mus first be made so, for example via loop normalization. If the
bounds are not of the proper form, then the given loop cannot be involved in any transformations, and
the loop nest is effectively divided into two: those outside the loop and those nested in the loop.

Loop skewing followed by permutation can easily produce bounds of this complexity, with minima,
maxima, floors and ceilings. Since we wish to be able to take permuted and skewed loops and perform
further transformations, we need full generality.

4.2 Determining the Bounds after Skewing or Reversal

Loop reversal can be implemented by negating the step and exchanging the upper and lower bounds, and
applying loop normalization to make the step again unity. It is also easy to determine the bounds after
loop skewing [18]. Moreover, if the bounds were previously in the class of bounds we can transform,
then they remain so after the loop bound transformations for skewing and reversal,

4.3 Determining the Bounds after Permutation

We outline our method for determining the bounds of a loop nest after permutation by a. We explain the
general method and demonstrate it by permuting the following loop nest to make k the outermost loop
and i the innermost loop.

for i := 1 to ni do
for j :=2i to n, do

for k :=2i+j-1 tomin(j,nk)do

11



The inequalities extracted from the above loop nests are:

i>l :<ni

>2i j <_ nj
k>_2i+j- 1 k<_j k< nk

From these inequalities, we can find the maximum and minimum possible values of each loop index.
This can be easily done by substituting the values obtained from the outermost loop to innermost. The
minimum and maximum values are:

i > I i <_ni

j_22×x =2 j<_n,
k>2×x+2-1=3 k < min(n_,nk).

We define for loop i
min(l,) = max (L")

where
°= +

anad aJ min(Ik), sgn(I/'k) = sgn(i',k)
k max(hk), otherwise.

Similar formulas hold for max(1,).
The inequalities can be expressed in a more uniform notation. We first note that I, r_ i...)] if and

only if 1, _> f(...) since Ii is an integer. Thus in the inequality I, > Lq we can remove the ceiling in
the L'. We can then move the I, term to the same side as the summation and multiply the inequality
through by 11 to get

si--

lai,0-li + Ptl+ k _< 0, if I,-" > 0.
k=I

The sense of the inequality is reversed if 1c', < 0. We can perform the same manipulations of the upper
bound expressions. We can also multiply through by -I when the test is >. Again we can perform the
same manipulations for the upper bound inequalities. 'his results in a series of inequalities of the form

iCC( + <_.

where the ek are compile time constants and e' is a loop nest invariant.
To determine the loop bounds for loop index i after permutation by or, we first rewrite each inequality

containing i, producing a series of inequalities i < f(...) and i > f(...). Each inequality of the form
i < f(...) contributes to the upper bound. If there is more than one such expression, then the minimum
of the expressions is the upper bound. Likewise, each inequality of the form i > f(. .. ) contributes to the
lower bound, and the maximum of the right hand sides is taken if there is more than one. Each inequality
of the form i • f(j) is considered twice. Suppose loop j is placed outside of i, the expression does not
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need to be changed since the loop bound of i can be a function of !he outer index j. As for loop index
j, we must substitute i by its minimum or maximum, whichever minimizes f. A similar procedure is
applied to the upper loop bounds.

We demonstrate this method for the above example. Substituting the minimum and maximum of i
and j into bounds of loop k, and those of i into bounds of loop j, we obtain:

k>2i+j-1 k<_j k<nk
k>3 k<n, k<nk

j_2i k<j j<n, k>2i+j-I
j>_2i j 2ýk j <_nj j<_k-2i- I

_ j>k j<n, j<_k-2-1=k-3

i>l i<ni j<_k-2i-1i>_l i_< (k - j-1)/2 =i_<L[(k - j-1)/2]

The transformed bounds are the following:

for k :=3 to min(nk,nj) do
for j := k to min(n,, k - 3) do

for i := I to min(hi, L(k- j - 1)/2]) do
s;

The loop bounds produced as a result of permutation again belong to the class discussed in Section 4.1,
so that our methods can calculate the loop bounds after further transformation of these loops.

4.4 Determining the Bounds for General 2-D Loop Transformations

The process for determining the bounds after a general 2-D transforma'don T is similar to that for
permutation. First, we produce the set of inequalities relating the original loop indices i and j, and
calculate the maxima and minima for the indices. Transformation T maps i and j to a linear combination
of i' and j'. V. e replace all references to i and j by the equivalent linear combinations of i' and j' in
the inequalities. The inequalities remain linear. We then apply the same transformation T to the maxima
and minima of i and j to produce those for V and j'. Once these are known, the loops are placed in the
desired order and the bounds are calculated, just as in the permutation case.

4.5 Determining the Bounds after Tiling

It has been suggested that strip-mining and interchanging be applied to determine the bounds of a
tiled loop. However, it is not straightforward when the loop bounds are not rectangular [18). A more
direct method is as follows. When tiling, we partition the iteration space, whatever the shape of the
bounds, as in Figure 2. Each rectangle represents a computation performed by a tilc, some tiles may
contain little or even no work.

We replace the loop nest to be tiled, (pi,_... ,pj), with (p,.... ,pi.... ,p). The lower bound on
the Pk loops, i < k < j, is the maximum of the original lower bound and p'; similarly, the upper bound
is thc minimum of the original upper bound and p' I Sk I, wher Sk is the size of the tile in thc k
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T.

Figure 2: Tiling a trapezoidal loop (2-D)

loop. For loops p,, the lower and upper bounds arm simply the minimum and maximum values of loop
index k. As shown in Figure 2, some of these tiles are empty. The time wasted in determining that the
tile is empty should be negligible when compared to the execution of the large number of non-empty
tiles in the loop. The p' loops step by Sk.

Applying these methods to the permuted example loop nest, we can tile to get the following: (Note
that k', j' and i' can be permuted at will.)

for k' =3 to min(nj, nk) by Tk do
for j' :=2 to n, by Tj do
for i' := I to nj by T, do

for k :=max(3, k') to min(nk,nj,k'+ Tk - 1) do
for j :=max(k,j') to min(hi,k- 3,j'+ Ti - 1) do
for i :a- max(l, i') to min(ni, [(k - j - 1)/2],i'+ T, - 1) do

s;

After tiling, the loops within the tiles are again in the form we need to perform further permutation,
skewing and so on. This property is very useful for tiling for coarse-grain parallelism and then skewing
and permuting to create fine-grain DOALL parallelism. The loops controlling the tile have a step chosen
by the compiler and therefore known at compile time. However, it may not be possible to normalize the
loop in such a way that those bounds will still be in the class we need to perform further permutation
with loop,- controlling these tile loops.

5 Conclusions

We have developed a theory that unifies various previously proposed loop transformations, and enables the
application of compound transformations. This theory is general enough to encompass both parallelizable
and non-parallelizable loops. Previous approaches focus on either specific elementary transformations on
general loop nest representation, or general linear transformations on a subclass of loops, namely, the set
of loops whose dependences can be represented as a set of distance vectors. This uniform notation is
necessary to allow reasoning about the space of all transformations to reduce the search for the optimal
transformation.

We have applied this theory to the problem of maximizing the degree of parallelism in loop nests.
This paper propoe.s a practical approach to maximize the degree of parallelism for various different
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machine architectures via gencral linear transformations, There are many different possible sequences
of linear transformations that can be applied and the algorithm to find the optimal can potentially be
expensive. We reduce the problem of maximizing parallelism for different architectures to finding a
series of coarsest fully permutable loop nests. By showing that it is easy to transform the loops in this
canonical form to suit different architectures, we unify all these different parallelization problems into
one. This problem formulation reduces the general parallelization problem into the problem of finding
the outermost, largest, fully permutable nest, thus significantly reducing the search space.

We have also applied this theory to the problem of finding loop bounds after transformation. By
considering the loop nest as a whole, the general algorithm for determining loop bounds is simplified.
For example, in the case of tiling there is no need to have different versions of the transformation for
constant loop bounds and for "triangular loops" - the bounds can be determined in a unifbrm manner.
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